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Robust full order sliding mode control for nonlinear systems under
time-varying input delay

Zhangzhen Zhu, Yu Zhang, and Ping Li

Abstract— This paper proposes a systematic robust predictive
control to solve the stabilization problem for a class of invert-
ible nonlinear system with model uncertainties, exogenous dis-
turbances and time-varying input delays. It’s still an open prob-
lem to synthesize the sliding mode control (SMC) with infinite-
dimensional backstepping transformation since the control input
under SMC is non-differentiable. Hence, a chattering-free and
Lipschitz continuous full order terminal sliding mode control is
presented to enhance robustness and achieve finite-time stability
simultaneously using the geometric homogeneous property. Fur-
thermore, input-to-state stability for this target system is analyzed
rigorously including internal dynamics. Finally, several simulations
are illustrated to show the superiority of the proposed control
comparing with the conventional state feedback laws.

Index Terms— Time-varying input delay, full-order TSM,
feedback linearization, robust control, Lyapunov stability.

I. INTRODUCTION

A. History review of the literature
Control strategies for systems with input delay have been studied

extensively in the last decades due to their ability of handling
widespread engineering applications, for instance, industrial [1],
networks [2] and robotic systems [3]. Unpredictable degradation
in robustness performance and system stability may happen if the
input delay is not compensated properly. Therefore, several milestone
control frameworks have been proposed, such as the reduction
method [4] for linear systems and infinite-dimensional backstepping
transformation [5] for nonlinear systems. Meanwhile, vast majority
of practical systems may suffer from both unknown input delay and
plant parameters, which attracts more attention on how to effectively
alleviate these uncertain influences recently. An adaptive output
feedback control is proposed to overcome the unknown actuator
delay, plant parameters and unmeasurable state for linear systems [6]
while a systematic adaptive control under unknown actuator delay is
investigated in [7] for nonlinear systems.

Moreover, since perturbations imposed on the input delay system
cannot be compensated immediately due to the causality principle for
real systems, it has been proved in [8] that there exists a fundamental
limitation to the disturbance attenuation under the state feedback
stabilizer, especially for the nonlinear system suffering from both
model uncertainty and exogenous disturbance. This limitation is
illustrated in [9] through the state feedback control which needs
higher order state information. Unfortunately, for many nonlinear
systems, there exists a major obstacle for stabilizer design due to
the finite-time escape phenomenon which means the system tends
to instability before the control reach. This phenomenon has been
revealed in [5] and the arbitray large input delay can only be
compensated under a forward complete assumption. However, this
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assumption may not hold when the unknown model structure and
disturbance are imposed on the nominal dynamics which renders the
system goto infinity. To cope with this intractable problem, we should
consider other anti-disturbance methods to suppress the perturbation
effects compared with the conventional state feedback control.

Naturally, we associate the anti-disturbance control with SMC,
which is recognized as one of the most successful control methods
due to its fast convergence, insensitivity to disturbances [10], and
has been studied extensively for over 60 years. However, traditional
SMC requires the actuator switching infinitely fast to enforce the ideal
sliding motion which usually results in damage to the actuator and
even excites high frequency unmodeled dynamics. In recent years,
many improved methodologies such as high-order SMC [11], the
terminal SMC (TSM) [12], state dependent boundary layer design
[13] and the fixed-time SMC [14], have been proposed to explore
the homogeneity, solve the chattering phenomenon and deal with
the fixed time stability. Furthermore, in order to design the high-
order SMC through a systematic way for nonlinear systems, a state-
space exact linearization method [15] can be utilized due to its
potential to transform the invertible complex nonlinear systems to
linear cases. However, abundant systems do not satisfy this exact
linearization condition but admit only partially linear forms, which
means the remaining internal dynamics retains nonlinear and suffers
from various perturbations directly especially under the existence of
time-varying input delay.

B. Contribution and orgnization of the paper
Specifically, the main contribution of this paper can be summarized

as the following aspects.
1) To attenuate the perturbation effects on nonlinear system with

time-varying input delay one step further, we investigate the
SMC techniques combined with the infinite-dimensional back-
stepping transformation compared with the state feedback laws.
To the best of the author’s knowledge, it’s the first time in
literature that the SMC based infinite-dimensional backstepping
predictor is adopted to stabilize this kind of nonlinear system.

2) A continuous and nonsingular full order TSM, coined as
CNTSM, is proposed to address the robust control problem
with perturbations. Moreover, confronted with the false trigger-
ing problems for widespread applications under measurement
noises, this Lipschitz continuous controller can drive the states
into a customizable small neighborhood of the equilibrium
in finite time while eliminating false swtiching phenomenon
simultaneously. In summary, this approach can be regarded as
a compromise between chattering suppression and strict TSM.

3) The CNTSM based infinite-dimensional backstepping predictor
requires no higher order state information and an admissible
control input is generated for practical systems. Besides, input-
to-state stability of the target system is rigorously analyzed
including internal dynamics. It’s shown that under the proposed
control, the ultimate bound of state is eliminated further, anti-
disturbance ability is enhanced and system robustness under
non forward complete condition is observably improved.

The rest of the article is organized as follows. Some preliminaries
and motivation is firstly introduced in Section II. Delay-free robust
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control is investigated in Section III and then extended to time-
varying input delay nonlinear system in Section IV. Simulation results
are illustrated in Section V before the final conclusion in Section VI.

II. PRELIMINARIES AND MOTIVATION

A. Preliminaries
We begin with recalling some basic mathematical definitions and

useful lemmas for better comprehension of this paper. Definitions of
functions K, KL and K∞ used in this paper can be found in [16].
Now consider the following full order nonlinear system:

ẋ(t) = f(x(t), u(t)) (1)

where f : Rn×R→ Rn is a Lipschitz continuous mapping function
in domain D ⊂ Rn, f(0, 0) = 0 and u ∈ R is the control input.

Definition 2.1: (see [5]) Nonlinear system (1) is called strongly
forward complete if there exist a smooth positive definite function R
and class K∞ functions Π1, Π2 and π ∈ R+ such that:

Π1(|x|) ≤ R(x) ≤ Π2(|x|), ∂R(x)

∂x
f(x, u) ≤ R(x) + π(|u|)

for all x ∈ Rn, u ∈ R. Denote ξ(t, x0) as the unique solution to
system (1) from the initial state x0 ∈ Rn. This definition ensures
system (1) doesn’t not exhibit finite time escape phenomenon, i.e.,
for every initial condition and bounded input, ξ (t, x0) always exists.

Definition 2.2: (see [17]) The origin of (1) is called a finite-time-
stable equilibrium if there exists an neighborhood N ⊆ D containing
the origin and a setting-time function T : N\{0} → R+, such that:
(i) Finite-time convergence: For every x ∈ N\{0} and t ∈ [0, T (x)),
limt→T (x) ξ (t, x) = 0 and ξ(t, ξ(h, x)) = ξ(t+ h, x).
(ii) Lyapunov stability: For each open neighborhood Uε of 0, there
exists an open subset Uδ of N containing 0 such that, for every
x ∈ Uδ\{0} and t ∈ [0, T (x)), ξ(t, x) ∈ Uε.
According to the definition above, it is easy to obtain T (x) =
inf
{
t ∈ R+ : ξ(t, x) = 0

}
. Moreover, it can be further proved that

for every l0 > 0, there exists an open neighborhood Nl0 ⊂ N
including 0 such that, for every x ∈ Nl0\{0}, T (x) > l0|x|.

Lemma 2.1: (see [17]) For the perturbed nonlinear system ẋ =
f(x, u)+d(x, t), if there exists a positive definite and Lipschitz con-
tinuous function V (x) such that (D+(V ◦x))(t) ≤ −c(V (x(t)))α+
M% for c > 0 and α ∈ (0, 1). Then state x is ultimately bounded
by (2) in finite time for ∀t ≥ Γ, where Γ = (2/c(1− α))σ1−α.

|x(t)| ≤ 1

l0c(1− α)
σ(1−α), V (x(t)) ≤ σ , (2M%/c)

1
α (2)

where (D+V )(t) is the upper right Dini derivative of V , M > 0
is the Lipschitz constant of V , γ = (1 − α)/α and the continuous
disturbance d ∈ R is bounded by % = supD×R+ |d(x, t)| < %0.

Definition 2.3: (see [18]) A family of dilations δrε is a map-
ping that assigns to every real ε ∈ R+ a diffeomorphism,
δrε (x1, . . . , xn) = (εr1x1, . . . , ε

rnxn), x ∈ Rn and r ∈ R+
n is

the dilation coefficient.
A function S(x) is homogeneous of degree α > 0 with respect to

the family of dilations δrε , if S (εr1x1, . . . , ε
rnxn) = εαS(x).

A vector field f(x) = (f1(x), . . . , fn(x))T is homogeneous
of degree h ∈ R with respect to the family of dilations δrε if
fi (εr1x1, . . . , ε

rnxn) = εh+rifi(x), i = 1, . . . , n.
Lemma 2.2: (see [18]) Suppose the continuous vector field f(x)

in definition 2.3 is homogeneous of degree h < 0 w.r.t. the family of
dilations δnε , ki(i = 1, · · · , n) makes the polynomial function of ψ
(ψ ∈ R), ψn + knψ

n−1 + · · · + k1 Hurwitz. Then the equilibrium
x = 0 of ẋ = f(x) is globally finite-time stable.

Notation: For numbers x, µ ∈ R, we denote dxcµ = |x|µ sgn(x)
from now on for brevity, where sgn(x) is a signum function.

Given a function φ(t) : R+ → R, we denote φ−1(t) as its inverse
function and φ′(t) as its derivative. For a vector x ∈ Rn, denote
|x(t)| as its Euclidean norm, |w(t)| = supx∈[0,1] |w(x, t)| as the
infinity norm of a scalar function w(·, t) ∈ L∞[0, 1].

Denote y1 ◦ y2(x) = y1(y2(x)) as the composite function.
A continuous saturation function is defined as below:
sat(x, ϕ) = x/ϕ, |x| < ϕ; sat(x, ϕ) = sgn(x), |x| ≥ ϕ (3)

B. Motivation
Consider a general nonlinear system described by:

ẋ = f(x, t) + g(x, t)u(t−D(t)) + d(x, t), y = h(x, t) (4)

where f, g : Rn×R+ → Rn, are continuous differentiable mapping
function in domain D ⊂ Rn, u ∈ R is control input, h : Rn×R+ →
R indicates the output function and d : Rn × R+ → Rn is the
exogenous disturbance. Besides, D(t) > 0 is the time-varying input
delay, denote φ(t) = t−D(t) > 0 and make following assumptions.

Assumption 2.1: (see [19]) Function φ : R+ → R is continuous
differentiable, φ′(t) > 0 for all t ≥ 0 and φ(t) is invertible (φ−1(t)
exists) such that the control signal is able to reach the plant without
changing the direction of propagation. Following relationships are
kept valid which means D(t) and D′(t) are bidirectionally bounded.

π0
∗ =

1

supτ≥φ−1(0)(τ − φ(τ))
, π1
∗ =

1

supτ≥φ−1(0)(φ
′(τ))

(5)

According to [8], perturbations in (4) cannot be compensated directly
due to the delayed control input. And in [9], the ISS stabilisation
for nonlinear system with input delay and disturbance is investigated
through conventional state feedback control. Based on these investiga-
tions, we intend to figure out the limitation of disturbance attenuation
under some other robust control methods, such as SMC. Nevertheless,
it’s well known that the robustness of SMC can be attributed to the
discontinuous switching signal which may lead to severe chattering
phenomenon especially under delayed control input and measurement
noise. Therefore, in this paper we systematically discuss the robust-
ness performance of both internal and external dynamics w.r.t. (4)
utilizing CNTSM based infinite-dimensional backstepping predictor
and not only exogenous disturbances but also time-varying model
uncertainties exist.

III. DELAY-FREE NONLINEAR ROBUST CONTROL

In this section we will discuss two control techniques to system-
atically solve the delay-free stabilization problem of (4) which paves
the way for addressing the input delayed case in Section IV.

A. Feedback linearization of SISO objects
Assumption 3.1: We make the following assumptions in this paper:
1) Either the state space exact linearization problem of (4) is

solvable (see [15]) or (4) has relative degree r in domain D.
2) All the state variables (x1, · · · , xn) are measureable.
3) Exogenous disturbance is globally continuously differentiable

and bounded, denote supt≥t0 ‖d(t)‖2 = d̄.
An input-affine nonlinear system is called to have a relative degree

r in domain D, if the Lie derivative LgLifh(x) = 0 is valid for all
i < r−1 and LgLr−1f h(x) 6= 0. Moreover, according to proposition
4.1.3 described in [15], if r is strictly less than n for every x0 ∈ D,
then there exists a neighborhood N of x0, and it’s always possible
to find n− r smooth functions φr+1(x), . . . , φn(x) exist such that
(6) is satisfied and the map Φ(x) = col (ζ, η) is a diffeomorphism.

Lgφi(x) = 0, for r + 1 ≤ i ≤ n, ∀x0 ∈ N (6)

col(ζ, η) = col(h(x), . . . , Lr−1f h(x), φr+1(x), . . . , φn(x)) (7)
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Next, define z = Φ(x) = col (ζ, η) as the new coordinate transforma-
tion, where ζ and η are external and internal dynamics respectively.
Furthermore, ζ̇r = Lrfh ◦ Φ

−1(ζ, η) + LgL
r−1
f h ◦ Φ−1(ζ, η)u is

satisfied so that the request for relative degree can be fullfilled.
Finally, the nonlinear system under model uncertainties and exoge-

nous disturbances in (4) can be transformed into a new coordinate

ζ̇i−1 = ζi, i = 2, · · · , r (8)

ζ̇r = α0 (ζ, η) + β0 (ζ, η)u+ α̃ (ζ, η) + β̃ (ζ, η)u+ %r(z)

η̇ = ∂xΦ[r+1,n](f(x, t) + d(x, t))|x=Φ−1(z) = $(ζ, η, d)

where α(ζ, η) = Lrfh (x) and β(ζ, η) = LgL
r−1
f h (x) are actual

nonlinear terms due to the model uncertainties while α0(ζ, η),
β0 (ζ, η) are the nominal ones. From now on, we combine the
residual terms α̃ (ζ, η), β̃ (ζ, η)u as δm(z, u) for brevity. Moreover,
term %r(z) is induced by additive disturbance d(x, t).
Reformulate dynamics (8) in a neat brunovsky canonical form as:

η̇ = $(ζ, η, d), y = Ccζ (9)

ζ̇ = Acζ +Bc(β0(ζ, η)u+ α0(ζ, η) ) + %̄(z, u)

u = (−Lrfh(x) +
∑r

i=1
ki−1L

(i−1)
f h(x))/(LgL

r−1
f h(x)) (10)

where ζ ∈ Rr, η ∈ Rn−r , %̄(z, u) = δm(z, u)+%r(z) is the lumped
perturbation and (Ac, Bc, Cc) is the canonical representation about
a chain of r integrators. The control input u makes the polynomial
function ζr−1 + kr−1ζ

r−2 + · · ·+ k1ζ + k0 Hurwitz.
Assumption 3.2: η̇ = $(ζ, η, d) is continuously differentiable

with (ζ, η, d) and η̇ = $(0, η, 0) is exponentially stable in a
neighborhood of η = 0 denoted as Dη1 = {η : 0 ≤ ‖η‖2 ≤
ηM}. Moreover, β0(x) is Lipschitz continuous for ∀x ∈ D with a
corresponding constant Lβ .

Proposition 1: If ‖δm(z, u)‖2 ≤ kϑ‖z‖2 + δϑ and ‖%r(z)‖2 ≤
%̄ϑ are satisfied for some constant kϑ ∈ R+ and ∀z ∈ Rn,
η̇ = $(ζ, η, d) satisfies the properties in Assumption 3.2, then under
feedback control u, the state z = col(ζ, η) is ultimately bounded by
a class K function of δϑ, %̄ϑ only when η(t0) ∈ Dη2 together with
a norm-limited perturbation, where Dη2 ⊂ Dη1.

Remark 3.1: The complete proof of Proposition 1 is given in
Appendix I and its robustness performance will be compared with
the sliding mode control in the next subsection.

B. Continuous nonsingular terminal sliding mode control
The mission of the CNTSM is to force the system slide along a

prescribed sliding manifold and then compel all the state variables
converge into a customizable vicinity of equilibrium in finite time
through a Lipschitz continuous manner. It’s worth noting that this
CNTSM method is inspired by [12] to obtain insensitive performance
under measurement noises, which will be illustrated in Section V.

Consider the full order nonlinear system described in (9), to
accomplish finite time convergence of the dynamics, the sliding
manifold is designed as:

s = ζ̇r + krdζrcµr + · · ·+ kidζicµi + · · ·+ k1dζ1cµ1 = 0 (11)

where ki, i = 1, · · · , r − 1 makes the polynomial function of ψ
(ψ ∈ R), ψr+krψ

r−1 + · · ·+k2ψ+k1 Hurwitz. Besides, when the
ideal sliding manifold s = 0 is reached, µi can be defined satisfying
the following conditions:

µi−1 = µiµi+1/(2µi+1 − µi), i = 2, . . . , r, ∀r ≥ 2 (12)

where µr+1 = 1, µr = µ, µ ∈ (0, 1) and µ1 = µ when r = 1.
Remark 3.2: We can prove that 0 < µi < 1, i, j = 1, . . . , r.
step 1: When i = r, we can obtain µr = µ < µr+1 = 1.

step 2: When i = r − j, suppose µr−j < µr−j+1 is valid.
step 3: When i = r − j − 1, using (12) yields

µr−j−1 =
µr−jµr−j+1

2µr−j+1 − µr−j
=

µr−jµr−j+1

µr−j+1 + (µr−j+1 − µr−j)

We can further obtain µr−j−1 < (µr−jµr−j+1)/(µr−j+1) =
µr−j and using the induction method, it can be concluded that 0 <
µ1 < · · · < µr < 1 is valid. Now we begin to prove the stability
and robustness of system (9) under the proposed CNTSM.

Theorem 1: The sliding manifold of nonlinear system (9) will
reach into a customizable small neighborhood of s = 0 in finite time
and then both internal and external states z = col(ζ, η) converge
into the vicinity of equilibrium along the manifold within finite-time
under Assumption 3.2, if the sliding manifold s is selected as (11)
and the Lipschitz continuous control is designed as follows:

u = β−10 (ζ, t) (ueq + usw) (13)

ueq = −α0(ζ, η)−
∑r

i=1
ki sat(ζi, ϕi)|ζi|µi (14)

T u̇sw + usw = −η? sgn(s) = − (kp + ku + λ) sgn(s) (15)

function sat(ζ, ϕ) is defined in (3), usw(t0) = 0; ki and µi(i =
1, . . . , r) are constants that defined in (11) and (12); constants T , λ >
0 and kp, ku satisfying kp ≥ | ˙̄%(z, u)|max, ku ≥ |usw(t)|max.

Proof: Substituting the control (13) in (11) yields:

s(t) = usw + %̄(z, u) + %0(t) = s1(t) + %0(t) (16)

%0(t) =
∑r

i=1
ki (sgn(ζi)− sat(ζi, ϕi))|ζi|µi (17)

and %̄0 = sup⋂
|ζi|<ϕi %0(t). It should be noticed that the control

law defined in (14) is Lipschitz continuous since the i-th control
derivative w.r.t. ζ equals: u̇eq−i = ki(µi + 1)dζicµi/ϕi, |ζi| ≤
ϕi. As a comparision, ueq defined in [12] only satisfies Hölder
continuity when |ζi| → 0 and will behave singularly especially under
the existence of state measurement noises. The solution of u̇sw is
calculated as (18), thus usw(t) is also continuously differentiable,
both |usw| and |u̇sw| are bounded (refer to (15)) and |u̇sw| will
decrease as the increasement of parameter T .

u̇sw(t) = −(usw (t0)− η? sgn(s))e−
t−t0
T /T (18)

Now choose a Lyapunov candidate as Vs1 = s1
2/2 (see (16)), then

its derivative w.r.t. time t can be derived as

V̇s1 = s1ṡ1 = ( ˙̄%(z, u)s− kp
T |s|)− (

usw
T s+

ku
T |s|)−

λ

T |s|

− ( ˙̄%(z, u)− η?

T sgn(s)− usw
T )%0(t)

≤ − λT V
1/2
s1 + S̄0, S̄0 = (kp +

ku + η?

T )%̄0 (19)

In the first stage, according to Lemma 2.1 we can conclude that
the sliding manifold s(t) defined in (16) can only converge into a
neighborhood of s1 = 0 within finite time and its ultimate bound is

|s1(t)| ≤ 4T 2S̄0/(λ2l0) = ς̄0%̄0, t ≥ Γ (20)

ς̄0 = 4T 2(kp +
ku + η?

T )/(λ2l0), Γ = 8T 2S̄0/λ2 (21)

where %̄0 (obtained when every ζi arrive into their layers) is defined in
(17) and l0 is a constant w.r.t. the initial value of ζ(t0) in (2). Finally
the sliding manifold s(t) defined in (11) is ultimately bounded by

s(t) = (ς0(t) + 1)%0(t) ≤ (ς̄0 + 1)%̄0, t ≥ Γ (22)

In the second stage, external dynamics in system (9) is homogeneous
of degree µ−1 < 0 (see Lemma 3.1 later). According to Lemma 2.2,
since gain k is chosen to make the polynomial function of s = 0 in
(11) Hurwitz, state ζ will converge into a small vicinity of equilibrium
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along s(t) in finite time Γ1 under (17) and (22), since the bounded
value (ς̄0 + 1)%̄0 can be regarded as an inhomogeneous term of (11).
Consequently, there exists a class KL function βs1 and Γ ∈ R+

equals (21) such that ζ is ultimately bounded by βs1 and a K function
Es1 within finite time through the same proof as in [20].

‖ζ(t)‖ ≤ βs1(‖ζ (t0) ‖, t− t0), t0 ≤ ∀t ≤ t0 + Γ + Γ1 (23)

‖ζ(t)‖ ≤ Es1((ς̄0 + 1)%̄0) , γ̄sat1, ∀t > t0 + Γ + Γ1 (24)

Analogously, the total dynamics is ultimately bounded by (25) with
χ̄s1 , p4L(γ̄sat1 + d̄)/(p3(1− ι2)) (details see Proposition 1).

‖z(t)‖2 ≤ γ̄sat1 + ι3χ̄s1 + σ−11 (σ2(χ̄s1)) (25)

The ultimate bound of z under CNTSM is obviously smaller com-
pared with (96) since the customizable small term (ς̄0 + 1)%̄0 is
independent of the perturbation %̄(z, u) in (9) such that Ῡpert (see
(89)) in both internal and external dynamics is overcomed. Thus, the
proof of theorem 1 is completed and robust analysis above can be
extended to a global concept if Dη1 in Assumption 3.2 equals Rn.

Moreover, according to Assumption 3.2, the converse Lyapunov
theorem (see [16] and (7)), we can deduce that there always exists a
Lyapunov function Vt1 to describe the dynamics (9) under CNTSM.

Vt1(x) = Vs1(ζ) + Vη2(η), α3(|x|) ≤ Vt1(x) ≤ α4(|x|) (26)

V̇t1(x(t)) ≤ −ρ1(|x(t)|) + ρ2(χ̄s1) (27)

where Vη2 is defined in (90) and ρ1, ρ2, α3, α4 ∈ class K∞.
Remark 3.3: There are two facts worth noting with respect to the

proposed CNTSM law.
1) The proof above implies the arrival sequence of ζi into their

corresponding layers is inconsequential under the designed
sliding manifold (11) and control policy (13).

2) Sliding manifold defined in (11) is unavailable because of the
higher order term ζ̇r . Nevertheless, this won’t effect the final
results since only sgn(s) is required as in (15).

Denote g(t) = ζr(t) − ζr(0) +
∫ t
0 (
∑r
i=1 kidζic

µi) and ts as the
system sampling time, then sgn(s) = sgn(g(t)− g(t− ts)).

Lemma 3.1: Consider one full order sliding manifold as defined
in (11) with order n and µi(i = 1, · · · , n) in (12), then the vector
field Eν under control (13) is homogeneous of degree µ−1 w.r.t. the
family of dilations δrε , if ri is selected as ri = (1− µ)(n− i) + 1.

proof: The closed loop dynamics under the feedback control (13)
is regulated as a chain of n integrators (8) with the respective vector
F (ζ) = (F1(ζ), . . . ,Fn(ζ))T. Therefore, denote the Euler vector
field as Eν which satisfies Eν =

∑n
i=1 Fi(ζ1, · · · , ζn) ∂

∂ζi
. Then

it’s easy to obtain following relationships of the vector F .

Fi(ε
(1−µ)(n−1)+1ζ1, · · · , ε(1−µ)(n−i)+1ζi, · · · , εζn) (28)

= ε(1−µ)(n−i−1)+1ζi+1 = ε(1−µ)(n−i−1)+1Fi(ζ), i ≤ n− 1

Fn(ε(1−µ)(n−1)+1ζ1, · · · , ε(1−µ)(n−i)+1ζi, · · · , εζn) (29)

= (εkndζnc)µn + · · ·+ (ε(1−µ)(n−i)+1kidζic)µi + · · ·

+ (ε(1−µ)(n−1)+1k1dζ1c)µ1 = εµ
∑n

i=1
kidζicµi = εµFn(ζ)

Hence, according to Definition 2.3 that Fi (εr1ζ1, . . . , ε
rnζn) =

εh+riFi(ζ), we can conclude the Euler vector field Eν is homoge-
neous of negative degree µ− 1 w.r.t. the dilation δrε(ζ1, . . . , ζn).

IV. SMC BASED PREDICTOR FOR TIME-VARYING INPUT
DELAY NONLINEAR SYSTEM

Reformulate the nonlinear dynamics (4) (replace x with X to
avoid ambiguity in later proof) in a concise form as (30), function
F(X(t), U(t), 0) indicates the ideal nominal model and F : Rn ×

1 × Rm → Rn is continuously differentiable to all the arguments
with F(0, 0, 0) = 0. It’s worth noting that Υ (t) is the lumped
perturbation including model uncertainties, exogenous disturbances
and their effects on internal dynamics (see Appendix I).

Ẋ(t) = F(X(t), U(t−D(t)), Υ (t)) (30)

Υ (t) = Υ (%̄(t), d(t)) ≤ Ῡ (%̄, d̄) (31)

We utilize the Lyapunov methods introduced in [21] in this section.
First, transform the original nonlinear system (30) into a transport
PDE and nonlinear ODE cascade system through a rescaled unity
interval notation and denote G(t) = φ−1(t)− t from now on.

Ẋ(t) = F(X(t), u(0, t), Υ (t)), u(1, t) = U(t) (32)

∂tu(x, t) = π(x, t)∂xu(x, t), x ∈ [0, 1] (33)

where u(x, t) = U(φ(G(t)x+ t)) and π(x, t) = (G′(t)x+ 1)/G(t).
Lemma 4.1: The ODE-PDE cascade system (32)-(33) can be trans-

formed into a target system below through the infinite-dimensional
backstepping transformation defined in (38).

Ẋ(t) = F(X(t), ψ(X(t)) + w(0, t), Υ (t)) (34)

∂tw(x, t) = π(x, t)∂xw(x, t)− ∂ψ(p(x, t))

∂p(x, t)
Q(x, Υ (t), t) (35)

w(1, t) = U(t)− ψ(P (t)) = 0 (36)

Q(x, Υ (t), t) = ∂tp(x, t)− π(x, t)∂xp(x, t) (37)

proof: The invertible backstepping-forwarding transformation is
defined as below and function (34) can be obtained using (38).

w(x, t) = u(x, t)− ψ(p(x, t)), ∀x ∈ [0, 1] (38)

p(x, t) = P (φ(G(t)x+ t)), ∀x ∈ [0, 1] (39)

function ψ is the continuous controller and P (t) is the predicted state
that G(t) time ahead of X(t) based on the nominal model, thus

P (τ) = G(t)

∫ φ−1(τ)−t
G(t)

0
F(P (φ(G(t)τ + t)), (40)

U(φ(G(t)τ + t)), 0)dτ +X(t), φ(t) ≤ τ ≤ t

p(x, t) = G(t)

∫ x

0
F(p(τ, t), u(τ, t), 0)dτ +X(t) (41)

Notice that p(0, t) = X(t) when x = 0 in (41). Next, differentiate
(41) with respect to x and t, we can examine that

∂tp(x, t) = G(t)

∫ x

0

∂F(p(τ, t), u(τ, t), 0)

∂p
∂tp(τ, t) + G(t) (42)

×
∫ x

0

∂F(p(τ, t), u(τ, t), 0)

∂u
π(τ, t)∂τu(τ, t)dτ + G′(t)

×
∫ x

0
F(p(τ, t), u(τ, t), 0)dτ + F(p(0, t), u(0, t), Υ (t))

π(x, t)∂xp(x, t) = G(t)π(x, t)F(p(x, t), u(x, t), 0) (43)

= G(t)

∫ x

0
d(π(τ, t)F(p(τ, t), u(τ, t), 0))

+ G(t)× π(0, t)F(p(0, t), u(0, t), 0)

Utilizing the relationships above, the solution of Q(x, Υ (t), t) to the
homogeneous differential equation (44) with (45) is given by (46),
where exp represents the function with natural logarithm.

∂xQ(x, Υ (t), t) = G(t)
∂F(p(x, t), u(x, t), 0)

∂p(x, t)
Q(x, Υ (t), t) (44)

Q(0, Υ (t), t) = F(X(t), u(0, t), Υ (t))−F(X(t), u(0, t), 0) (45)
Q(x, Υ (t), t)

Q(0, Υ (t), t)
= exp(G(t)

∫ x

0

∂F(p(τ, t), u(τ, t), 0)

∂p(τ, t)
dτ ) (46)
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Take partial derivative of w(x, t) in (38) with t and using (33) yields

∂tw(x, t) = ∂tu(x, t)− ∂tψ(p(x, t)) (47)

= π(x, t)(∂xw(x, t) + ∂xψ(p(x, t)))− ∂tψ(p(x, t))

= π(x, t)∂xw(x, t)− ∂ψ(p(x, t))

∂p(x, t)
Q(x, Υ (t), t)

Thus, Lemma 4.1 is proved.
Meanwhile, the inverse forwarding transformation is defined as:

u(x, t) = ψ(p̃(x, t)) + w(x, t), ∀x ∈ [0, 1] (48)

p̃(x, t) = G(t)

∫ x

0
F(p̃(τ, t), ψ(p̃(τ, t)) + w(τ, t), 0)dτ +X(t)

Under the forwarding transformation (48), the target system (34)-(36)
is transformed back to system (32)-(33).

Next, we introduce several inequalities and the infinity norm
described in Section II is used. According to (13), the CNTSM
controller we designed is Lipschitz continuous. Hence, the following
inequalities are valid where κ0, κ1 ∈ class K∞.

|ψ(p(t))| ≤ κ0(|p(t)|), |∂ψ(p(t))

∂p(t)
|2 ≤ κ1(|p(t)|) (49)

Ξ1(t) = |X(t)|+ |u(t)|, Ξ2(t) = |X(t)|+ |w(t)| (50)

Under the conditions in (49), we can further obtain that

|p(t)| ≤ Ω1(|Ξ1(t)|), |w(t)| ≤ |u(t)|+Ω3(|Ξ1(t)|) (51)

|p̃(t)| ≤ Ω2(|Ξ2(t)|), |u(t)| ≤ |w(t)|+Ω4(|Ξ2(t)|) (52)

where Ωi(i = 1, · · · , 4) ∈ class K∞ and (51)-(52) have been
proved in [21]. Moreover, according to Assumption 3.2, function F
is continuously differentiable w.r.t. all the arguments. Thus we can
obtain the following relationships using (31) and (45).

|∂(F(p(x, t), u(x, t), 0))

∂p(x, t)
| ≤ κ2(|p(t)|) + κ3(|u(t)|) (53)

Q(0, Υ (t), t)2 = (Υ (t)×
∫ 1

0
(
∂F(X(t), u(0, t), τΥ (t))

∂(τΥ (t))
)dτ )2

Q(0, Υ (t), t)2 ≤ Ῡ 2(Θ1(|X(t)|) +Θ2(|u(t)|) +Θ3(Ῡ ) ) (54)

where κ2, κ3 ∈ class K∞ and Θi(i = 1, · · · , 3) ∈ class K.
Theorem 2: The ISS property of original system (32)-(33) and

target system (34)-(36) can be achieved under the CNTSM con-
trol defined in (13) and Assumption 2.1, 3.1, 3.2. There exists
βsmc1, βsmc2 ∈ class KL and Esmc1, Esmc2 ∈ class K such that
the following relationships hold for ∀t ≥ t0.

Ξ1(t) ≤ βsmc1(Ξ1(0), t) + Esmc1(Ῡ , %̄0) (55)

Ξ2(t) ≤ βsmc2(Ξ2(0), t) + Esmc2(Ῡ , %̄0) (56)
Proof: Consider the sliding manifold s defined in (11) and substi-

tute the backstepping controller ψ(X(t)) + w(0, t) into the original
nonlinear system (9), where controller ψ is defined in (13). Then
s = usw + %̄(z, u) + %0(t) + β0(X)w(0, t), denote Vs2 = s2

2/2 as
the ISS Lyapunov function for (34)-(36) and s2 = usw + %̄(z, u).

V̇s2 =

(
˙̄%(z, u)s− kp

T |s|
)
−
(
usw
T s+

ku
T |s|

)
− λ

T |s| (57)

− ( ˙̄%(z, u)− η?

T sgn(s)− usw
T )(%0(t) + β0(X)w(0, t))

≤ − λT V
1/2
s2 + S̄d, S̄d = (kp +

ku + η?

T )(Ῡw + %̄0)

Then the ultimate bound of s(t) can be calculated the same way as
Theorem 1 and denote Ῡw = supφ(t)≤τ≤t |β0(X(τ))w(0, τ)|.

|s(t)| ≤ (ς̄d + 1)(Ῡw + %̄0), ς̄d =
4T 2

λ2l0
(kp +

ku + η?

T ) (58)

|s2(t)| ≤ 4T 2S̄d/(λ2l0), t ≥ Γd , 8T 2S̄d/λ2 (59)

Consequently, there exists a classK∞ function Es2 w.r.t. Ῡw such that
external state ζ is ultimately bounded within finite time (an essential
remark will be given in Remark 4.1 after the proof of Theorem 2).

‖ζ(t)‖ ≤ Es2((ς̄d + 1)(Ῡw + %̄0)) , Ῡsat2, ∀t > t0 + Γd + Γd1

Analogously, the total dynamics is ultimately bounded by (60) with
χ̄s2 , p4L(Ῡsat2 + d̄)/(p3(1− ι2))(details see Proposition 1).

‖z(t)‖2 ≤= Ῡsat2 + ι3χ̄s2 + σ−11 (σ2(χ̄s2)) (60)

In summary, a Lyapunov function Vt2(X) can be selected in the same
way as (26)-(27) to describe (34) and ρ3, ρ4, ρ5, ρ6, ρw, α5, α6 ∈
class K∞, and the Young’s Inequality of Ῡw (above (58)) is used.

Vt2(X) = Vs2(ζ) + Vη2(η), α5(|X|) ≤ Vt2(X) ≤ α6(|X|) (61)

V̇t2(X) ≤ −ρ3(|X(t)|) + ρ4(%̄0, d̄) + ρw(Ῡw) (62)

≤ −ρ3(|X(t)|) + ρ4(%̄0, d̄) + ρ5(β20(X(t))) + ρ6(w2(0, t))

Next, select a Lyapunov function L(t) w.r.t. w(x, t) and h ∈ R+.

L(t) =
h

2

∫ 1

0
ecxw2(x, t)dx, c ≥ (1− π∗1) max{1, 1/π∗1} (63)

L̇(t) =
h

2

∫ 1

0
ecxπ(x, t)dw2(x, t) (64)

− h
∫ 1

0
ecxw(x, t)(π(x, t)∂xw(x, t)− ∂tw(x, t))dx

= −h
2

∫ 1

0
(cπ(x, t) + ∂xπ(x, t))ecxw2(x, t)dx (65)

− hπ(0, t)

2
w2(0, t)− h

∫ 1

0
ecxw(x, t)

∂ψ(p(x, t))

∂p(x, t)
Q(x, Ῡ , t)dx

notice that cπ(x, t) +∂xπ(x, t) in (65) is only linear with x, use the
same proof as in [21], we get the lower bound of cπ(x, t)+∂xπ(x, t).

γ0 = min{c− 1 + π∗1 , (c+ 1)π∗1 − 1} > 0 (66)

cπ(x, t) + ∂xπ(x, t) ≥ π∗0γ0 (67)

Λ(x, Ῡ , t) =
hec

π∗0γ0

∫ 1

0
(
∂ψ ◦ p(x, t)
∂p(x, t)

Q(x, Ῡ , t) )2dx (68)

According to (46) and (49)-(54), Λ(x, Ῡ , t) above is bounded by (69),
we use ◦ introduced in section II for the convenience of reading.

π∗0γ0
ec

Λ(x, Ῡ , t) ≤ κ1(|p(t)|) exp(
2

π∗0
(κ2 ◦ |p(t)|+ κ3 ◦ |u(t)| ) )

× hῩ 2(Θ1 ◦ |X(t)|+Θ2 ◦ |u(t)|+Θ3 ◦ Ῡ )

≤ h( Ψ1(Ξ2(t))Ψ2(Ξ2(t)) + Ψ1(Ξ2(t))Θ3(Ῡ ) ) Ῡ 2 (69)

Ψ1(y) = κ1 ◦Ω1(Ω′4(y))× exp(
κ2 ◦Ω1 ◦Ω′4(y) + κ3 ◦Ω′4(y)

π∗0/2
)

Ψ2(y) = Θ1 ◦ y +Θ2 ◦Ω′4(y), Ω′4(y) , (y +Ω4 ◦ y) (70)

Utilizing the Young’s Inequality and (69) above, it yields

2π∗0γ0
ec

Λ(x, Ῡ , t) ≤ Ψ2
1 (Ξ2(t)) + h2Θ2

3(Ῡ )Ῡ 4

+ Ψ2
1 (Ξ2(t))Ψ2

2 (Ξ2(t)) + h2Ῡ 4 (71)

Now we turn back to analyze L̇(t) in (65), utilizing the relationships
above and the Young’s Inequality again, it yields

L̇(t) ≤ −hπ
∗
0

2
w2(0, t)− hπ∗0γ0

4

∫ 1

0
ecxw2(x, t)dx+ Λ(x, Ῡ , t)

Limited circulation. For review only
IEEE-TAC Submission no.: 23-0076.1

Preprint submitted to IEEE Transactions on Automatic Control. Received: January 13, 2023 00:42:07 Pacific
Time



6 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017

Finally, select a total Lyapunov candidate as VT = Vt2 + L (61,63)

V̇T (t) ≤ −( ρ3 ◦ |X(t)| − ρ5 ◦ β20 ◦X(t) ) + ρ4(%̄0, d̄) (72)

− (
hπ∗0

2
w2(0, t)− ρ6 ◦ w2(0, t)) +

h2ec

2π∗0γ0
(Θ2

3 ◦ Ῡ + 1)Ῡ 4

− (
hπ∗0γ0

4

∫ 1

0
w2(x, t)dx− ecΨ2

1 ◦ Ξ2(t)

2π∗0γ0
(Ψ2

2 ◦ Ξ2(t) + 1) )

According to Assumption 3.2, we know that ρ5 ◦ β20 ◦X(t) is
equivalent with ρ′5(LβX) for some ρ′5 ∈ K∞. Hence, the first
term in (72) tends to be negative for some large λ designed in (57).
Furthermore, since w(x, t) and Ξ2(t) are defined on a finite interval
w.r.t. π∗0 , it’s always possible to choose a sufficient large h (see (63))
to make sure the third and fifth term in (72) are both negative.

V̇T (t) ≤ −ρ′1 ◦ |Ξ2(t)|+ h2ec

2π∗0γ0
ρ′2 ◦ Ῡ + ρ4(%̄0, d̄) (73)

Hence, (72) can be reformulated as (73) and there’s no doubt that a
larger ultimate bound will pay the price for a larger h. Furthermore,
the ultimate bound is positively associated with Ῡ (31) and inversely
correlated with π∗0 (5), which means larger perturbations and longer
input delay will lead to inevitable worse robustness performance.
Finally, the ISS of target system (34)-(36) can be proved through the
same way as in [20], which is illustrated in (56). Analogously, using
relationships in (50)-(52), the ISS of original system (32)-(33) can
be concluded as (55). Thus, Theorem 2 is proved completely.

Remark 4.1: It’s worth noting w.r.t. Theorem 2 that could we
select s2 = usw + %̄(z, u) + β0(X)w(0, t) in (57)? Such that the
term β0(X)w(0, t) can be compensated through SMC techniques.
This motivation is inspired by the fact that |β0(X)w(0, t)| and its
derivative w.r.t. time t is bounded in a finite set D (according to
Assumption 3.2, (13) and (38)). However, the answer is negative.
Notice ẇ(0, t) derived by ṡ2 and the definition of w(0, t) in (38),
term u̇sw(t) is generated as in (18), one cannot guarantee u̇sw(t) be
compensated by term λ

T |s| in (57) for ∀t > 0 especially under long
time delay conditions even η? is sufficient large. Hence, we could
only give a prudent ISS property in Theorem 2 and the essential
reason behind is the causality of the delayed input control.

V. NUMERICAL EXAMPLES

A. Delay-free case
Example 1. Consider a nonlinear pendulum dynamics as below

ẋ1 = x2 (74)

ẋ2 = −a sin(x1 + δ)− bx2 + cu(t−D(t)) + d(t)

where x1, x2 represent the angle and angular velocity respectively.
The torque input is u and a, δ, b, c ∈ R are physic parameters. Our
goal is to stabilize the pendulum at x1 = 0 and a conventional
feedback control is given by cu = a sin(x1 + δ) − (k1x1 + k2x2)
where k1 and k2 are chosen as in (10). However, the actual control is
generated by ĉu = â sin(x1+δ)−(k1x1+k2x2) due to uncertainties
in a and c, where â and ĉ are the estimated values. Thus, %̄(z, u) in
(9) equals below and D(t) = 0 in this case.

ĉ%̄(z, u) = (âc− aĉ) sin(x1 + δ)− (c− ĉ)(k1x1 + k2x2) (75)

and parameters kϑ, δϑ in Assumption 3.2 equal:

kϑ = | âc− aĉ
ĉ
|+ |c− ĉ

ĉ
|
√
k21 + k22, δϑ = | âc− aĉ

ĉ
|| sin δ| (76)

Estimated parameters are â = ĉ = 1 and the actual parameters varies
as a = 1.2 + 0.4cos(10t), c = 1 + 0.2cos(10t); b = 0.4, δ = 5. In
this case, kϑ = 1.962, δϑ = 0.384 and the exogenous disturbance
d = 2 sin(1.5t) is imposed when t ≥ 6s. Hence, we select the control

parameters in (15) as: kp = 3, ku = 3, η? = 7, T = 0.5; k1 =
6, k2 = 5; ϕ1 = 0.01, ϕ2 = 0.02 in (3) and µ1 = 11/25, µ2 =
11/18 in (12). Besides, a band-limited white noise with power 1e−6
is added on the measurement, initial state is given by x(t0) = [1,−1].

Remark 5.1: As illustrated in Fig. 1, states x1 is driven into a de-
sired small vicinity of equilibrium under CNTSM even a destructive
exogenous disturbance is imposed when t ≥ 6s. As a comparison,
a static offset of x1 exists(see (89)) under the feedback control due
to model uncertainties, and its robustness become even worse when
disturbance is imposed. Moreover, notice the finite time convergence
is simultaneously achieved(see (21)) under CNTSM and we give a
comparison with the performance of Fixed Time SMC (see [14]).
Meanwhile, an admissible control u that free of false switching is
generated by CNTSM under the measurement noises in Fig. 2. As
a comparison, u generated by Chattering-free TSM( [12]) and Fixed
Time SMC( [14]) in general, only make sense in a theoretical concept.
Example 2. Consider a 3rd order nominal nonlinear dynamics as

ẋ1 =
x3

2 + 2

5(x32 + 1)
u(t−D(t))− x1, ẋ2 = sinh(4x3) + x3 (77)

ẋ3 =
sin(x2x3)

cos(x3) + 2
+ u(t−D(t)), y = h(x) = x2

The relative degree of (77) equals 2, β0(x) = 4 cosh(4x3) and Φ(x)
defined in (7) equals col(x2, sinh(4x3), η) where η = −5x1 +x3 +

tan−1(x3), x2 = ζ1, x3 = ln(ζ2+(ζ22+1)1/2)/4 = f0(ζ2) and η̇ =
LfΦ(x) = (−5η+f0(ζ2) + tan−1 ◦f0(ζ2)) + sin(ζ1f0(ζ2))×· · · .
We omit some terms by · · · , since ζ = 0 for the zero dynamics
η̇ = $(0, η, 0) in (9) and η̇ = −5η, which is asymptotically stable
and Assumption 3.2 valids in this case. In simulation, we set the
actual model dynamics as (78) during t ∈ [0, 24]s, the disturbance
d(t) = sin(5t) col(0.1, 0, 0.2) is imposed during t ∈ [15, 24]s, both
model uncertainty and disturbance are revoked during t ∈ [24, 30]s.

ẋ3 =
0.35 + sin(x2x3)

cos(x3) + 2
+ (0.2 sin(5t) + 1)u(t−D(t)) (78)

ζ̇2 = (α− α0)− β − β0
β0

(α0 +
∑2

i=1
kiζi)−

∑2

i=1
kiζi (79)

According to (8) and (79), parameters kϑ, δϑ in Assumption 3.2 equal:

kϑ = |β − β0
β0

|
√
k21 + k22, δϑ = |α̃|+ |β − β0

β0
α0| (80)

β − β0
β0

=
sin(5t)

5
, α̃ =

cosh(4x3)

5
(4 sin(5t) +

7

cos(x3) + 2
)

from which we can obtain a conservative bound of kϑ, δϑ which
depend only on x3 that belonging to a finite set D. We keep the
control parameters same with the last case with a sampling time
ts = 2ms and initial state is set by x(t0) = [1, 1, 0.15].

Remark 5.2: As illustrated in Fig. 3, x2 keeps robust and con-
verges into the designed vicinity in finite time under CNTSM when
model uncertainty and disturbance both exist for t ∈ [0, 24]s,
while the feedback control method remains fragile as analyzed in
Remark 5.1. Besides, x1 that related to the internal dynamics η =
−5x1+x3+tan−1(x3) shows better anti-disturbance property under
CNTSM. Moreover, we give a comparison with the conventional
reduced order SMC(ROSMC), in which sre = ζ̇r +

∑r
i=1 kiζi = 0

(also see (11)). It shows that the state convergence under ROSMC
is apparently slower than CNTSM due to the fact sre = 0 doesn’t
possesse the negative homogeneous degree as defined in Lemma 3.1.
A ’switching’ (indeed is continuous, see (18)) control manner is
demonstrated in Fig. 4 clearly for CNTSM, ROSMC methods.
B. Input delayed case

Naturally, we wonder what robustness performance will be when
input delay exists, especially using SMC techniques. Consider the
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Fig. 1: State response under time-varying perturbations

Fig. 2: Control input under time-varying perturbations

Fig. 3: State response under time-varying perturbations

Fig. 4: Control input under time-varying perturbations

system (74) with an input delay function as (81)

D1(t) =
t+ 1

2t+ 1
, φ1(t) = t−

t+ 1

2t+ 1
(81)

G1(t) =
t+ 1√

(t+ 1)2 + 1 + t
, π0

∗ =
√

2, π1
∗ = 1 (82)

we increase the model uncertainties to a = 2 + cos(t), c = 1 +
0.5 cos(t) during t ∈ [0, 11]s compared with the delay-free case,
x(t0) = [1, 0.2] and keep the control parameters invariable.

Remark 5.3: In Fig. 5(b), there exists an ultimate bound of x1 (see
Ξ1(t) in (55)) for both two methods due to the input delay. Mean-
while, Fig. 5(b) shows that during the steady state t ∈ [8, 11]s, the
difference of x1 between CNTSM and feedback control is obviously
larger than the delay-free case in Fig. 5(a), which means there exists
an excess dividend for the steady state error under SMC. This fact can
be explained from two aspects. First, in this case no internal dynamics
exists and ρ4(%̄0, d̄) (see (73)) that induced by model uncertainty
is overcomed under CNTSM and only a customizable small term
ρ4(%̄0) is left. Hence, the ultimate bound of Ξ1(t) = |X(t)|+ |u(t)|
under CNTSM is smaller, which is shown in Fig. 6. Secondly, |u(t)|
of CNTSM is larger in steady state due to the fact that |ζi|µi > |ζi|
when 0 < |ζi| < 1 (see (14)) along with an extra control term
usw (see (15)), this fact is also shown in Fig. 6. Finally, the excess
dividend of the steady state error under SMC is explained from both

(a) state x in delay-free case (b) state x in input delayed case
Fig. 5: State response under model uncertainties

Fig. 6: Ξ1(t) and |u(t)| response under input delay case

theoretical and experimental perspectives.

(a) state x response with D1(t) (b) state x response with D2(t)

Fig. 7: State response under model uncertainties

(a) state x response with D2(t) (b) control input with D2(t)

Fig. 8: State response under non forward complete condition

Next, consider system (77) with another input delay function as

D2(t) =
t+ 3

t+ 4
, φ2(t) = t−

t+ 3

t+ 4
, π0

∗ = 1 (83)

G2(t) = −
t+ 3 +

√
(t+ 3)(t+ 7)

2
, π1

∗ = 0.956 (84)

and keep all the settings same with the delay-free case in (77).
Remark 5.4: According to (73) and (82,83), the ultimate bound

of x(t) is inversely correlated with π∗0 which has been illustrated
Fig. 7. Meanwhile, the steady state error and convergence rate under
CNTSM are both superior to the feedback control with an admissible
control. Besides, perturbations are revoked during t ∈ [24, 30]s and
relate it with the disturbance zone in Fig. 7, one should notice the
mechanism that when input delay exists, perturbations imposed on
the system are sequentially compensated with each delay interval
due to the causality principle and an ultimate bound will be caused
inevitably. In Fig. 8, the uncertain model dynamics varies to ẋ3 =
0.4+sin(x2x3)

cos(x3)+2
+ (0.2 sin(5t) + 1)u(t − D(t)) compared with (78),

and the positive term 0.4
cos(x3)+2

obviously renders the system instable
and forward complete property in Definition 2.1 isn’t valid any more.
The results in Fig. 8 show that the strong anti-disturbance ability of
CNTSM prevents the state escape and a fast convergence is achieved
simultaneously compared with the state feedback control.
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VI. CONCLUSION

In this paper, a class of invertible nonlinear system under the co-
existence of time-varying input delay and perturbations is consid-
ered. We develop a full order Lipschitz continuous and chattering-
free terminal SMC along with the infinite-dimensional backstepping
predictor to stabilize this system. The input-to-state stability for target
system is proved rigorously including internal dynamics while the
steady state error and anti-disturbance ability under the proposed
method are both superior to the conventional feedback control.

APPENDIX I
First, select the Lyapunov candidate of external state as V1(ζ) =

ζTPζ where P is a positive symmetric matrix and use the Rayleigh-
Ritz inequality, the following relationships hold

α1(‖ζ‖2) ≤ V1(ζ) ≤ α2(‖ζ‖2) (85)

α1(‖ζ‖2) , λmin(P )‖ζ‖22, α2(‖ζ‖2) , λmax(P )‖ζ‖22 (86)

where α1, α2 are class K∞ functions and λmin(P ), λmax(P ) are
the minimum and maximum eigenvalues of P respectively. Take the
derivative of V1(ζ) along the external dynamics in (9) with the virtual
control ν = Kζ which renders λmin(Q) > 2kϑ for the Lyapunov
equation (Ac +BcK)TP + P (Ac +BcK) = −Q.

V̇1 = ζT [(Ac +BcK)TP + P (Ac +BcK)]ζ + 2ζTPBc%̄ (87)

≤ −λmin(Q)‖ζ‖22 + 2kϑ‖PBc‖2‖ζ‖22
+ 2kϑ‖PBc‖2‖ζ‖2‖η‖2 + 2‖ζ‖2‖PBc‖2(δϑ + %̄ϑ)

≤ −(λmin(Q)− 2kϑ)‖ζ‖22 + 2‖ζ‖2‖PBc‖2(δ̄ϑ + %̄ϑ)

≤ −ι1(λmin(Q)− 2kϑ)‖ζ‖22, ι1 ∈ (0, 1)

∀|ζ‖2 ≥ ς1(δ̄ϑ + %̄ϑ), ς1 =
2 ‖PBc‖2

(λmin(Q)− 2kϑ)(1− ι1)

where δ̄ϑ = δϑ + kϑηM (see Assumption 3.2). Consequently, there
exists a class KL function β1 and finite t1 ∈ R+ independent of t0
such that external state ζ is ultimately bounded by

‖ζ(t)‖ ≤ β1(‖ζ (t0) ‖, t− t0), t0 ≤ ∀t ≤ t0 + t1 (88)

‖ζ(t)‖ ≤ α−1
1 (α2(ς1(δ̄ϑ + %̄ϑ))) , Ῡpert, ∀t > t0 + t1 (89)

Next, according to the converse Lyapunov theorem (see [16]), we
obtain (90,91) where Vη2 is the Lyapunov candidate of internal
dynamics and σi(i = 1, · · · , 4) are class K functions on Dη1.

σ1(‖η‖2) ≤ Vη2(η) ≤ σ2(‖η‖2), η ∈ Rn−r (90)
∂Vη2

∂η
$(0, η, 0) ≤ −σ3(‖η‖2), ‖

∂Vη2

∂η
‖2 ≤ σ4(‖η‖2) (91)

Moreover, σj(‖η‖2) , pj‖η‖22 (j = 1, 2, 3), σ4(‖η‖2) = p4‖η‖2
are satisfied attributed to the exponential stable hypothesis. According
to Assumption 3.2 there exists a Lipschitz constant L for $ w.r.t. ζ,
d and analogously take the derivative along internal dynamics yields

V̇2 =
∂Vη2

∂η
$(0, η, 0) +

∂Vη2

∂η
[$(ζ, η, d)−$(0, η, 0)] (92)

≤− p3‖η‖22 + p4L‖η‖2(‖ζ‖2 + ‖d‖2)

≤− ι2p3‖η‖22, ι2 ∈ (0, 1),
p4L(‖ζ‖2 + ‖d‖2)

p3(1− ι2)
≤ ‖η‖2 ≤ ηM

Utilizing the boundedness theorem (see [16]), select r > 0 such
that Dη2 = {η : ‖η‖ < r} ⊂ Dη1, if the following inequalities are
satisfied (which means there are limitations on perturbation and norm
of the initial state η(t0)), i.e., ‖η(t0)‖2 ≤ σ−12 (σ1(r)) and

p4L(‖ζ‖2 + ‖d‖2)

p3(1− ι2)
≤
p4L(Ῡpert + d̄)

p3(1− ι2)
, χ̄ < σ−1

2 (σ1(r)) (93)

then the internal state η can be bounded by a class of K functions
for some finite t2 > 0 which is dependent on η(t0) and χ̄

‖η(t)‖2 ≤ β2(‖η(t0)‖2, t− t0) + σ−1
1 (σ2(χ̄)) (94)

‖η(t)‖2 ≤ ι3χ̄+ σ−1
1 (σ2(χ̄)), ∀t ≥ t0 + t1 + t2

where the term ι3χ̄ can be arbitray small postive value due to
the property of functions KL. Finally, whole state z = col(η, ζ)
is bounded by the following inequality for ∀t ≥ t0 + t1 + t2 and the
maximum perturbation that the system can tolerate is also given.

δ̄ϑ + %̄ϑ + d̄ <
p3(1− ι2)

ς1p4L
α−1
2 (α1(σ−1

2 (σ1(r)))) (95)

‖z(t)‖2 ≤ ‖η(t)‖2 + ‖ζ(t)‖2 = Ῡpert + ι3χ̄+ σ−1
1 (σ2(χ̄)) (96)

Thus, Proposition 1 is proved completely.
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