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Adaptive Quasi-Fixed-Time Integral Terminal
Sliding Mode Control for Nonlinear Systems

Zhangzhen Zhu, Yongliang Lin and Yu Zhang, Member, IEEE

Abstract—This brief proposes an adaptive quasi-fixed-time
integral terminal sliding mode control, in order to solve the sta-
bilization problem for a class of invertible nonlinear systems with
unknown varying perturbations. The proposed method can drive
the sliding manifold into a predefined vicinity of equilibrium and
estimate the bound of the state-dependent perturbation in quasi-
fixed-time despite the large initial state errors. Besides, the state
variable also converges in quasi-fixed-time due to the geometric
homogeneous property of the designed sliding manifold. Further-
more, a novel nonsingular adaptive layer function is proposed
and the respective control is completely chattering-free, Lipschitz
continuous and no gain overestimation exists, which is critical
to practical applications under measurement noises. Finally, the
superiority of the method is validated through simulation and a
permanent magnet synchronous motor control experiment.

Index Terms—Terminal sliding mode control (TSM), adaptive
law, fixed-time stability, robust control.

I. INTRODUCTION

Sliding mode control (SMC) is recognized as one of the
most successful control methods due to its fast convergence
and insensitivity to disturbances [1]. Although traditional SMC
has been studied extensively for over 60 years, it requires the
actuator to switch infinitely fast to enforce the ideal sliding
motion which usually results in damage to the actuator and
even excites high-frequency unmodeled dynamics. In recent
years, many improved methodologies such as chattering-free
terminal SMC (TSM) [2], intermittent SMC [3] and the fixed-
time SMC [4], have been proposed to solve the chatter-
ing phenomenon, save the control effort and deal with the
fixed-time stability respectively. Besides, a high-order SMC
(HOSMC) approach is proposed in [5] to mitigate the chatter-
ing phenomenon and accomplish the finite-time convergence
simultaneously.

Nevertheless, both these improvements require the prior
information of the lumped perturbation and the switch gain
overestimation is inevitable to overcome the mismatched per-
turbation. Meanwhile, in many applications containing mea-
surement noises and state-dependent disturbances, HOSMC is
not that efficient compared with the conventional SMC [6].
Hence, in recent years, attention has been concentrated on
the adaptive SMC to estimate these mismatched perturbations
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TABLE I: Comparisons Between SMC Literature.
? : Whether the control input u is Lipschiz continuous.

Literature Convergence Continuous? System Order Perturbation Info.

[10] Asymptotic No Arbitrary No requirement
[7], [13] Finite-Time No Arbitrary No requirement

[2] Finite-Time No Arbitrary Need
[4], [14] Fixed-Time No Second Need

[17] Fixed-Time No Arbitrary Need
This brief Quasi-Fixed Yes Arbitrary No requirement

online adaptively [7]–[9]. In summary, there exist three types
of adaptive SMC:

1) [10], [11]: Increasing the switch gain monotonically
until the sliding manifold converges.

2) [7]: Increasing the switch gain monotonically and
decreasing the gain when the sliding manifold converges
into the predefined boundary layer.

3) [12]: Equivalent control to ensure the switch gain is as
small as possible to alleviate the chattering, while still
large enough to compensate the lumped perturbations.

Chattering phenomena exist in type 1, 2 and in general, these
methods only make sense in theoretical concepts. Meanwhile,
non-consideration of the state-dependent perturbation may
lead to instability [13]. The equivalent control in type 3 is free
of chattering. However, the perturbation is assumed to be an
unknown constant that is independent of the system state and
different cases are derived which is hard for implementation.

In addition to the mismatched perturbation problems above,
many practical applications require robust strict finite-time
convergence such as space-station docking and applications
in power systems [14]. These finite-time convergence tasks
cannot be realized utilizing the conventional SMC [1] and
fortunately, thanks to the geometric homogeneous property
[15] and theorem in [16], the finite-time, even fixed-time
convergence can be realized. Several important finite or fixed-
time articles are listed in Table I for a clear comparison.

Motivated by the aforementioned problems, this brief in-
tends to solve the four major issues listed in Table I simul-
taneously, i.e., fixed-time convergence, Lipschitz continuous
controller design, arbitrary-order nonlinear system stabiliza-
tion, and state-dependent perturbation online estimation.

Specifically, the main contribution of this brief can be
summarized as the following aspects.

1) An adaptive quasi-fixed-time integral terminal sliding
mode control, coined as AFITSM, is proposed to sta-
bilize the perturbed nonlinear system (later see (1)) and
estimate the bound of the state-dependent perturbation in
quasi-fixed-time, despite the co-existence of model un-
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certainty and exogenous disturbance. Meanwhile, there’s
no requirement for their derivative information.

2) A novel nonsingular adaptive layer function is designed
and the controller is completely chattering-free and
Lipschitz continuous.

3) The effectiveness of this TSM (terminal sliding mode)
based approach and the quasi-fixed-time convergence for
different initial states are verified through both simula-
tions and experiments.

The rest of this article is organized as follows. Problem
formulation and some preliminaries are first introduced in
Section II. The adaptive quasi-fixed-time integral terminal
sliding mode control is investigated in Section III. Next, the
proposed method is validated through both simulation and
experiment in Section IV before the conclusion in Section V.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider an invertible nonlinear single input single output
(SISO) system (see Chapter 4 in [18]) in the form of a chain
of n-th order integrators:

ẋi−1(t) = xi(t), i = 2, · · · , n
ẋn(t) = α(x) + β(x)u(t) + %(x, t)

= α0(x) + β0(x)u+ α̃(x) + β̃(x)u+ %(x, t)︸ ︷︷ ︸
d(x,t)

(1)

where the state x(t) ∈ Rn, u ∈ R is the control input,
α, β ∈ R (β 6= 0) are the actual nonlinear models while α0, β0

(β0 6= 0) are the nominal ones; the residual term α̃ = α−α0,
etc., the lumped perturbation d(x, t) ∈ R is induced by model
uncertainties α̃(x)+β̃(x)u and exogenous disturbances %(x, t).

In many literatures such as [2], [17], model uncertainties
are not considered and an unreasonable constant bound of
the lumped perturbation, even the bound on its derivative is
directly given. However, one cannot estimate the actual bound
of d(x, t) in (1) before designing the controller u(t). One of
this brief’s motivations is to eliminate the requirements on the
prior knowledge of d(x, t). The following assumption is made,
as the designed controller u(t) is generally based on the state
feedback.

Assumption 1: The state x(t) is fully measurable, d(x, t) in
(1) is continuously differentiable and bounded by

|d(x, t)| ≤ d̄0 + d̄1‖x(t)‖m1 (2)

where d̄0, d̄1 are unknown bounded positive constants and
m1 ∈ R+ reflects the type of perturbation, e.g., m1 = 1 for
viscous friction in motor speed control [19] and m1 = 2 for
aerodynamic drags. If one has no prior knowledge of m1, the
default value m1 = 1 is also acceptable.

Lemma 1: (see [16]) Given a system ẋ(t) = f(x(t)), if
there exists a function V (x) : Rn → R+ ∪ {0} such that (I)
V (x) = 0 ⇔ x = 0; (II) V̇ (x) ≤ −aV ρ1(x) − bV ρ2(x) + δ
for some a, b > 0 and ρ1 > 1, 0 < ρ2 < 1, then for δ ∈
(0,∞), state x(t) is practically fixed-time stable with time
T ≤ 1

a(ρ1−1) + 1
b(1−ρ2) , π is a scalar satisfying 0 < π < 1.

lim
t→T

V (x) ≤ min

{
a−

1
ρ1

(
δ

1− π

) 1
ρ1

, b−
1
ρ2

(
δ

1− π

) 1
ρ2

}

Notations: For x, µ ∈ R, denote dxcµ = |x|µ sgn(x) from
now on for brevity, where sgn(x) is a signum function.

A saturation function is defined as below:

sat(x, ϕ) = x/ϕ, |x| ≤ ϕ; sat(x, ϕ) = sgn(x), |x| > ϕ (3)

III. ADAPTIVE QUASI-FIXED-TIME INTEGRAL TERMINAL
SLIDING MODE CONTROL

To accomplish a quasi-fixed-time convergence of the dy-
namics in (1), the integral sliding manifold is designed as:

s(t) = xn +

∫ t

t0

∑n

i=1
ki(dxi(τ)cµi + dxi(τ)cνi)dτ (4)

where ki (i = 1, · · · , n) makes the polynomial function of ψ
(ψ ∈ R), ψn + knψ

n−1 + · · · + k2ψ + k1 Hurwitz. Besides,
µi (see [15]) can be chosen as follow:

µi−1 =
µiµi+1

2µi+1 − µi
, i = 2, . . . , n, ∀n ≥ 2 (5)

where µn+1 = 1, µn = µ, 0 < µi < 1 for i = 1, . . . , n and
νi > 1 is selected analogously (also can be found in [17]).

Before the introduction to Theorem 1, the following adaptive
laws for the variable control gain η̂ are defined in advance.

η̂(s(t)) =

{
η̂α + η1|s|2ρ1−1 + η2|s|2ρ2−1, |s| > %̄0

η̂β , |s| ≤ %̄0
(6)

η̂α(s(t)) = d̂0(t) + d̂1(t)‖x(t)‖m1 (7)
˙̂
d0(t) =

1

θ0
|s(t)| − ε0d̂0(t) (8)

˙̂
d1(t) =

1

θ1
|s(t)|‖x(t)‖m1 − ε0d̂1(t) (9)

η̂β(s(t)) =
(1 + %̄0)η̂?α + η0

%̄0

|s(t)|
|s(t)|+ 1

(10)

where d̂0(t), d̂1(t) ∈ R+ are the estimated gains w.r.t. the
perturbation bound in (2), θ0, θ1, ε0 ∈ R+ are the design
parameters and %̄0 ∈ R+ is a small constant defined later
in (18). In (6), design parameters 1 < ρ1 < ∞, 1/2 < ρ2 <
1, η1, η2 ∈ R+ and in (10) η0 ∈ R+ is a design parameter.
Denote t−f as the time instant just before tf , where s(tf ) ≤ %̄0

and s(t−f ) > %̄0, then η̂?α = η̂α(s(t−f )) is defined in (10).
Remark 1: In some literature like [20], η̂β(s(t)) is defined

as a barrier function in the form as η̂β(s(t)) = |s(t)|
%̄0−|s(t)|

to generate a sufficient large gain when s(t) approaches to
|s| = %̄0 from s = 0. Hence, this barrier function obviously
leads to infinity (|s| = %̄0) and high-frequency switch gains
(see (6)), especially under measurement noises. In general,
control signals are typically given to actuators rather than
the plant in practical systems, and the actuators often possess
limited bandwidth and cannot respond to high-frequency com-
mands with large amplitudes. Hence, the conventional barrier
function’s high-frequency and large amplitude control gain
can lead to a significant chattering phenomenon (see [21]).
Therefore, a new nonsingular adaptive layer function is defined
in (10) utilizing the continuously updated gain η̂?α, which can
adapt to the unknown varying perturbations and is chattering
free. Intuitive results can be found in Section IV.
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Theorem 1: The state x(t) of nonlinear system (1) will
converge into a vicinity of equilibrium in quasi-fixed-time, if
the sliding manifold s(t) is selected as (4) and the Lipschitz
continuous control u is designed as follows:

u = β−1
0 (x)(ueq + usw) (11)

ueq = −α0(x)−
∑n

i=1
ki (sat(xi, ϕi)|xi|µi + dxicνi) (12)

T u̇sw + usw = −η̂(s) sgn(s) (13)

where η̂(s(t)) is updated by (6), function sat(x, ϕ) is defined
in (3), ϕi is the small customizable boundary layer, ki and
µi, νi(i = 1, . . . , n) are constants that defined in (4) and (5);
T is a small low pass filter constant, %̄0 is induced by the
saturation function in (3,12) and is defined later in (18).

Proof: Stage 1: When |s(t)| > %̄0, η̂(s) = η̂α(s) +
η1|s|2ρ1−1 + η2|s|2ρ2−1 (6), choose the Lyapunov function as

V =
1

2
(s2 + θ0d̃0(t)

2
+ θ1d̃1(t)

2
) (14)

where d̃i(t) = d̄i − d̂i(t) (i = 0, 1, d̄i see (2)), and d̃i, d̂i
are utilized to represent d̃i(t), d̂i(t) for simplicity. Utilizing
(1),(4),(6) and (11), V̇ (t) can be derived as

V̇ = s [ α0(x(t)) + β0(x(t))u(t) + d(x, t) ] (15)

+ s
∑n

i=1
ki(dxi(t)cµi + dxi(t)cνi)− θ0d̃0 ˙̂

d0 − θ1d̃1 ˙̂
d1

= −s(d̂0 + d̂1‖x‖m1) sgn(s) + s(d(x, t) + %0(t) + o(T )) (16)

− s(η1|s|2ρ1−1 + η2|s|2ρ2−1) sgn(s)

−
[
d̃0 + d̃1‖x(t)‖m1

]
|s(t)|+ ε0θ0d̃0d̂0 + ε0θ1d̃1d̂1

where %0(t) is defined by (17) due to the input (12) in order
to reduce the chattering phenomenon under state measurement
noises, since the derivative of |xi|µi is singular at xi = 0 when
0 < µi < 1. Besides, o(T ) is induced by the low pass filter
input in (13) and can be bounded by some constants (see [12])
since T is usually small. It will be proved later that these two
treatments won’t sacrifice the system robustness and at the
same time, guarantee u in (11) is Lipschitz continuous.

%0(t) =
∑n

i=1
ki (sgn(xi)− sat(xi, ϕi))|xi|µi (17)

%̄0 = sup⋂
|xi|<ϕi

|%0(t)| (18)

Since ϕi in (3) is small layer width, %0(t), o(T ) are both small,
combine %0(t) + o(T ) (see 16) into the unknown term d̄0 of
|d(x, t)| (see (2)), and utilize (2,16) to obtain

V̇ ≤ −(η1|s|2ρ1−1 + η2|s|2ρ2−1)|s(t)| (19)

− (d̂0 + d̂1‖x(t)‖m1)|s(t)|+ (d̄0 + d̄1‖x(t)‖m1)|s(t)|

−
[
d̃0 + d̃1‖x(t)‖m1

]
|s(t)|+ ε0θ0d̃0d̂0 + ε0θ1d̃1d̂1

= −η12ρ1 × (
1

2
s2)ρ1 − η22ρ2 × (

1

2
s2)ρ2

+ ε0θ0d̃0(d̄0 − d̃0) + ε0θ1d̃1(d̄1 − d̃1)

≤ −η12ρ1 × (
1

2
s2)ρ1 − η22ρ2 × (

1

2
s2)ρ2 (20)

+
ε0θ0

2
(d̄ 2

0 − d̃ 2
0 ) +

ε0θ1
2

(d̄ 2
1 − d̃ 2

1 ) (21)

where the Young’s inequality has been used in (21). Next some
auxiliary terms are introduced into inequalities (20-21) and

η◦i = ηi2
ρi , ηi′ = min {η◦i , 1} (i = 1, 2) are defined to obtain

V̇ ≤ −η1′ ×
[
(
1

2
s2)ρ1 + (

1

2
θ0d̃

2
0 )ρ1 + (

1

2
θ1d̃

2
1 )ρ1

]
(22)

− η2′ ×
[
(
1

2
s2)ρ2 + (

1

2
θ0d̃

2
0 )ρ2 + (

1

2
θ1d̃

2
1 )ρ2

]
+
ε0θ0

2
(d̄ 2

0 − d̃ 2
0 ) +

ε0θ1
2

(d̄ 2
1 − d̃ 2

1 ) + η◦1(
θ0
2
d̃ 2
0 )ρ1

+ η◦1(
θ1
2
d̃ 2
1 )ρ1 + η◦2(

θ0
2
d̃ 2
0 )ρ2 + η◦2(

θ1
2
d̃ 2
1 )ρ2

Next, since θi > 0 in (8,9) and 1 < ρ1, 1/2 < ρ2 < 1 defined
under (10), using the fact that d̄ 2

i ≥ d̃ 2
i , it can be obtained

ε0
θi
2
d̄ 2
i + η◦2(

θi
2
d̃ 2
i )ρ2 + η◦1(

θi
2
d̃ 2
i )ρ1 − ε0

θi
2
d̃ 2
i (23)

≤ max

{
(ε0 + η◦1)( θi

2
d̄ 2
i ) + η◦2( θi

2
d̄ 2
i )ρ2 , θi

2
d̃ 2
i < 1

(ε0 + η◦2)( θi
2
d̄ 2
i ) + η◦1( θi

2
d̄ 2
i )ρ1 , θi

2
d̃ 2
i ≥ 1

}
, δi

Next, with Lemma 3 in [22], inequality in (23) and V̇ in (22)

V̇ ≤ −η1
′ × 31−ρ1V ρ1 − η2

′ × V ρ2 + δ0 + δ1 (24)

According to (14), s(t)2 ≤ 2V , θid̃i(t)2 ≤ 2V for i = 0, 1

are both satisfied. Then since V is bounded using Lemma 1,
|s(t)|,

√
θid̃i(t) will converge in fixed-time as follow

{√
θid̃i(t), |s(t)|

}
≤ 2

1
2 min

{(
δ0 + δ1
η ′1 31−ρ1

) 1
2ρ1

,

(
δ0 + δ1
η ′2

) 1
2ρ2

}
= 2

1
2 min

{
δ1
′, δ2

′} (25)

Remark 2: According to (25), s(t) could only converge into
a vicinity of s = 0, which pays the price for the fixed-time
perturbation estimation. Moreover, notice that d̄1 in (2, 23)
is supposed to be small when the initial value ‖x(t0)‖m1 is
very large. Otherwise, ηα, u, usw in (7,11,13) would exceed
the control bound for real systems and the disturbance com-
pensation becomes meaningless. The bounded input control
problem is out of scope here and will be introduced in the
future. Hence, there always exists proper small θ0 in (23) such
that 2

1
2 max

{
δ1
′, δ2

′} ≤ %̄0 (see (18, 25)).
Stage 2: When |s(t)| ≤ %̄0, choose the Lyapunov candidate

V =
1

2
s2 +

1

2
η̂β(s)2 (26)

utilizing (10) and the same treatment of %0(t) + o(T ) under
(18), denote d̄(t) = d̄0 + d̄1‖x(t)‖m1 , it can be obtained that

˙̂ηβ(s) =
(1 + %̄0)η̂?α + η0

%̄0

sgn(s)ṡ

(|s|+ 1)2
=

(1 + %̄0)η̂?α + η0

%̄0(|s|+ 1)2

× sgn(s) [−η̂β(s) sgn(s) + d(x, t) + %0(t) + o(T ) ]

≤ (1 + %̄0)η̂?α + η0

%̄0(|s|+ 1)2

[
−η̂β(s) + d̄(t)

]
(27)

then utilizing (1,4,11), the derivative of V in (26) w.r.t. time
t can be derived as below:

V̇ = sṡ+ η̂β(s) ˙̂ηβ(s) (28)

≤ s
[
−η̂β(s) sgn(s) + d̄(t)

]
+ η̂β(s)× (1 + %̄0)η̂?α + η0

%̄0(|s|+ 1)2

[
−η̂β(s) + d̄(t)

]



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

V̇ ≤ −
[
η̂β(s)− d̄(t)

]︸ ︷︷ ︸
ν1

|s| (29)

− η̂β(s)× (1 + %̄0)η̂?α + η0
%̄0(|s|+ 1)2︸ ︷︷ ︸

ν2

[
η̂β(s)− d̄(t)

]

Define an intermediate term s0 as (30), where η0 > 0 is
defined in (10). Notice the definition of η̂?α = η̂α(s(t−f )) under
(10) and it has been proved in stage 1 (see (7,25)) that the gain
η̂α(s(t−f )) will converge into a vicinity of d̄(t) in fixed-time.
Hence, the inequality in (31) is valid with a proper η0, and
the monotonicity of the function |s(t)|/|s(t)|+ 1 is utilized.

s0 = %̄0
d̄(t)

d̄(t) + η0/2
< %̄0, d̄(t) > 0 (30)

η̂β(s(t)) ≥ η̂β(s0) =
(1 + %̄0)η̂?α + η0
%̄0(|s0|+ 1)

|s0|

= [ (1 + %̄0)η̂?α + η0 ]
d̄(t)

(1 + %̄0)d̄(t) + η0/2

≥ d̄(t), s0 ≤ |s(t)| ≤ %̄0 (31)

Hence, V̇ in (29) can be scaled by (ν1, ν2 > 0)

V̇ ≤ −
√

2

{
ν1|s|√

2
+
ν1ν2η̂β(s)√

2

}
≤ −
√

2 min {ν1, ν1ν2}V
1
2

Hence, the sliding manifold finally converges into the small
layer |s(t)| ≤ s0 within finite time (see [15]), combine (10)
with (30), a larger η0 ensures a smaller vicinity of s(t) = 0,
but with the effort of a larger gain and vice-versa.

Stage 3: It has been proved in (31) that |s(t)| ≤ %̄0, for
the small sampling time τs, it’s known that | s(t)−s(t−τs)τs

| ∼=
|ṡ(t)| ≤ %̄0/τs. Besides, ṡ(t) in (4) has the same structure
as in [17] and state x will converge into a small vicinity of
zero in fixed-time, since %̄0/τs can be regarded as a small
inhomogeneous term of

∑n
i=1 ki(dxi(t)cµi + dxi(t)cνi) = 0.

Noticed that among these 3 stages, only in stage 2, s(t) is
finite-time stable. Hence, Theorem 1 is completely proved.

IV. SIMULATION AND EXPERIMENT

Simulation 1. Consider a second-order nonlinear system as

ẋ1 = x2 (32)
ẋ2 = cos(x2) + ( 2 + sin(x2) )u(t) + %(t)

where %(t) = sin(5t)+cos(4t) represents the unknown exoge-
nous disturbance, α0(x) = cos(x2) and β0(x) = 2 + sin(x2)
are the nominal models in (1). The unknown actual model is
set as α(x) = cos(1.5x2) + 0.5|x2|0.25, β(x) = 2.5 + sin(x2).
The goal is to stabilize the system under the lumped perturba-
tion and different initial states x(t0) in fixed time. The white
noise with power 1e− 8 is added on x(t) in (32).

Take an example, if the convergence time T ≤ 1.1s for s(t)
is set here, then ρ1 = 2, ρ2 = 0.5, η1 = 2, η2 = 2 in (6) can
be designed accordingly using Theorem 1 and Lemma 1 (one
can also refer to [4]), which leads to T ≤ 1.082s. And control
parameters k1 = 4, k2 = 3, µ1 = 9

23 , µ2 = 9
16 , ν1 = 21

19 , ν2 =
21
20 in (4,5) can be designed similar to the procedure in Section
II of [17]. Other parameters are selected as: m1 = 0.25 in (7),
θ0 = 0.5, θ1 = 10, ε0 = 0.1 in (8,9), η0 = 0.5 in (10); and

Fig. 1: Sliding manifold s(t), state x1(t) and x2(t) with different initial states under
the proposed nonsingular function η̂β(s(t)) in (10).

Fig. 2: Estimated gain d̂0(t), d̂1(t) and u(t), η̂β(t) under x(t0) = [1, 0].

T = 0.02 in (13); ϕ1 = 0.01, ϕ2 = 0.02 in (3). Three different
initial states are given by x(t0) = [1, 0], [5, 0], [20, 0].

Remark 3: As illustrated in Fig. 1, all the sliding manifolds
s(t) are driven into desired small vicinities of zero under the
AFITSM in T = 0.81s ≤ 1.1s as analyzed above, despite the
co-existence of model uncertainty and exogenous disturbance.
Besides, all the states x(t) converge into small vicinities of
x = (0, 0) at t = 3.1s simultaneously. These convergences are
accomplished in quasi-fixed-time that is independent of the
initial states. Meanwhile, in Fig. 2, under the proposed η̂β(s)
in (10), d̂0, d̂1 converge to the actual bound d̄0, d̄1 (see (2))
simultaneously from zero. Besides, when s(t) converges into
%̄0 (see (31)), gain η̂β dominates the controller (see (6)) and
a non-switching u(t) is generated due to the monotonicity of
η̂β w.r.t. |s(t)| (see (10)), when s(t) deviates from s = 0, η̂β
will increase monotonically and vice versa. System robustness
isn’t sacrificed since η̂β(s) ≥ d̄(t) (see (31)), and this proof
can be intuitively depicted in Fig.2, η̂β(s) precisely estimates
the lumped perturbation |d(x, t)| while still insensitive to the
measurement noises compared with the barrier function. The
control signal generated by the barrier function is typically
not feasible for real systems as analyzed in Remark 1.

Experiment 2. Consider the dynamics of a permanent mag-
net synchronous motor (PMSM) in [19].

dω

dt
=

3npψf0
2J0

iq −
F0

J0
ω + d (33)

where ω is the angular velocity, iq is the q-axis stator current
serves as the control input, np is the number of pole pairs,
ψf is the flux linkage, J is the moment of inertia, F is
the viscous friction coefficient, and their nominal values are:
np = 21, ψf0 = 9.114e − 3Wb, J0 = 2.6e − 4kg · m2,
F0 = 8e−6(Nm · s/rad). s(t) is defined as (4) with n = 1
and q0 = 3npψf0/2J0 is denoted. The lumped perturbation
equals: (∆J = J − J0, etc.)

d =
3np (∆ψfJ0 −∆Jψf0)

2JJ0
iq −

∆FJ0 −∆JF0

JJ0
ω − TL

J
(34)

where TL is the unknown time-varying load torque generated
by the magnetic powder brake (see Fig. 4), and this load
torque is proportional to the adjustable DC-voltage (see Fig.
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Fig. 3: top-middle: Gain estimation d̂0, d̂1 (q0 is defined upon (34)), the current iq .
bottom: Tracking trajectory of the angular velocity ω and the tracking errors.

Fig. 4: Experiment platform and load torque generator.

4). Moreover, the tested PMSM is equipped with a reducer
whose reduction gear ratio r0 equals 10, and a low-cost chip
AS5047 is selected to serve as the magnetic encoder (see Fig.
4). Besides, this PMSM is composed of 6 power MOSFETs
(KNY3406C) and a motor drive DRV8301DCAR, the MCU
is STM32F405VG and the sampling time is τs = 2ms. Two
desired angular velocities of the reducer shaft are set with
ωd1 = 5 - cos( 4π

5 t) rad/s and ωd2 = 10 - cos( 4π
5 t) rad/s,

the latter approaches the maximum speed of this PMSM, i.e.,
11 × r0 × 9.55 ≈ 1100 rpm. Due to the measurement noises
of the encoder, the layer in (3) is expanded as ϕ1 = 0.2 and
θ1 = 2, m1 = 1 due to the friction torque is proportional to
ω (see (2,33)), other control parameters are not changed.

Remark 4: The converge time of the sliding manifold s(t)
and the gain estimation should be T ≤ 1.1s as simulated
above. In Fig. 3, although the initial tracking errors and the
imposed unknown load torques (adjusted by the DC-Voltage)
are quite different in the two tests, the angular velocity ω(t)
and the gain estimation d̂0, d̂1 still converge simultaneously
in quasi-fixed-time, about T = 0.45s ≤ 1.1s which verifies
the correctness of the theorem. Besides, as depicted in Fig.
3, both two current signals iq are smooth without chattering
and singularities compared with the control signal under the
barrier function in Fig. 2 and Fig. 15 in [20]. Finally, the root-
mean-square tracking errors are 0.0712 for ω1(t) and 0.0763
for ω2(t), which reflects the perturbation estimation η̂β(t)
performs precisely. Otherwise, the errors e1(t), e2(t) won’t be
that small without the perturbation compensation.

V. CONCLUSION

In this brief, a class of invertible nonlinear systems under
the co-existence of model uncertainties and state-dependent
disturbances is considered. An adaptive quasi-fixed-time inte-
gral terminal sliding mode control is developed to stabilize this
system. The control input is chattering-free under the measure-
ment noises and the prior information on the perturbation is
not needed anymore. The adaptive fixed-time SMC problems
under input saturation will be addressed in the future.
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