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Abstract— This paper presents a novel tilting tri-rotor un-
manned aerial vehicle (UAV) based on the conventional tri-
rotor configuration, with each rotor having two tilting degrees
of freedom, which is an over-actuated system. Herein, the
dynamic model of this novel UAV is developed, which has nine
controllable variables. Owing to the nonlinear and coupled
nature of the system, many conventional nonlinear control
allocation algorithms are too computationally complex to be
calculated online. Therefore, a new control allocation method
is proposed by using a reversible mapping to transform the
nonlinear control allocation problem to the corresponding
linear control allocation problem. The feedback linearization
method is used to implement the entire control architecture
using the new control allocation algorithm. Furthermore, a
nonlinear disturbance observer (NDOB) is used to combat the
low robustness of the feedback linearization controller. Finally,
several simulation experiments are conducted to validate the
proposed method. The simulations reveal that the fuselage can
successfully track different spatial trajectories with different
attitudes, which corroborates the high maneuverability of the
fuselage over the conventional quadrotor.

I. INTRODUCTION

In recent decades, unmanned aerial vehicles (UAVs) have

attracted increasing research attention owing to their wide

applications and significant potential [1]. UAVs come in a

wide variety of shapes and sizes and have many advan-

tages over manned aircrafts. The studies on UAVs mainly

focus on their structure and control method. With regard

to the control method, many control algorithms have been

successfully implemented on UAVs. A classical cascade

proportional–integral–derivative (PID) algorithm has been

implemented in a quadrotor [2], [3]. The active disturbance

rejection control (ADRC) method has been implemented in

a fixed-wing UAV [4] and quadrotor [5]. Moreover, the H-

infinity control method, adaptive method, and model predic-

tive control method have also been introduced for controlling

a nonlinear UAV model [6], a linear UAV model [7] and

a multirotor [8], respectively. With regard to the structure,

UAVs can be broadly classified into rotorcrafts, fixed-wing

UAVs, and numerous other novel UAVs. Rotorcrafts have

many unique properties, such as vertical take-off and landing

(VTOL) and hovering; however, they exhibit some problems

such as poor endurance [9]. Fixed-wing UAVs have high
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endurance, owing to their flight mechanics, but lack VTOL

capability. Meanwhile, numerous novel UAVs have been

proposed to accomplish various tasks. For instance, hybrid

UAVs are an attempt to combine the advantages of rotorcrafts

and fixed-wing UAVs; they can switch between two different

flight modes depending on the task [10], [11], [12], [13].

Furthermore, numerous nonconventional UAVs have been

proposed; for example, [14], [15], [16] and the literature

therein [17].

Among these nonconventional UAVs, thrust vectoring is

a research hotspot in the field of UAV structure research.

In fact, many researchers have introduced this concept to

rotorcraft design to enhance the mobility and agility of

rotorcrafts by giving rotors one or more tilting DOFs, which

means that the rotor thrust vector can tilt in space, thereby

enhancing the maneuverability of the body [18], [19], [20],

[21]. However, many rotorcrafts, such as the UAV model

this study proposes, may become over-actuated systems

instead of underactuated systems because of the given tilting

DOFs. The over-actuated system has more control inputs

than control outputs, which means that the controller for the

over-actuated system can be designed with more freedom

and more challenges. Control allocation is a prevalent way of

tackling over-actuated systems, and it also has the ability of

tolerating the faults of the actuators. Specifically, the control

allocation process maps a virtual control signal generated

from the control loop into actuator commands that provide

actual control efforts. Owing to the redundancy in actuators,

the mapping from the virtual control to actuator commands

is a one-to-many mapping [22].

We suppose the system can be described as
{

ẋ = f (x, t) + g (x, t)U

y = l (x, t)
(1)

where U is the control input. The basic problem statement

of control allocation is expressed as follows:

min
τ

J (x, τ , t) s.t. U = h (x, τ , t)

Ω1 = {τi ∈ R
m|τmin 6 τi 6 τmax}

Ω2 = {τ̇i ∈ R
m|ρmin 6 τ̇i 6 ρmax} .

The τmin, τmax, ρmin, and ρmax are the limits of the actuator

variable τ , and J (x, τ , t) is the cost function. In general, we

can divide the control allocation problem into linear control

allocation and nonlinear control allocation based on whether

the equation h (x, τ , t) = B (x, t) τ holds. The linear

control allocation methods have been carefully organized

by scholars [23]. These methods are valid and classical.
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Sometimes, the effectiveness equation is nonlinear [24] like

this study, which means it is a nonlinear control allocation

problem. Therefore, many researchers have presented several

valid approaches, including nonlinear programming [25] and

mixed-integer programming [26]. Unlike the linear control

allocation case, in the nonlinear case, there is little hope of

finding a general-purpose nonlinear programming algorithm

and numerical software implementation for general nonlinear

allocation problems [27], which means that we need to

analyze each specific nonlinear problem. The effector model

in this study is also nonlinear. Herein, we propose a new

control allocation method to tackle the high nonlinearity of

the model.

The remainder of the paper is organized as follows. The

dynamic model of the UAV is presented in SectionII, and

the entire control architecture is designed in SectionIII.

SectionIV discusses the results of simulation experiments

performed to validate the proposed approach. Simulations

are implemented on some specific trajectories and the con-

vergence results are obtained. Any divergence that may occur

between the simulation and reference results is discussed.

Conclusions are presented in SectionV.

II. DYNAMIC MODEL

A. Structure of the Novel UAV

Conventional rotorcrafts, such as tri-rotor and quadrotor

UAVs, adjust the rotor lift by simultaneously increasing or

decreasing the rotational speed of the rotors to enable move-

ment in the vertical direction. If movement is required in the

horizontal direction, the fuselage must be tilted using the

component force in the horizontal direction, thereby pushing

the fuselage forward. Clearly, this way of moving forward is

inefficient and limited because there are fewer controllable

variables than motion DOFs in the conventional model

(underactuated system). In this study, each pair of coaxial

rotors in the conventional tri-rotor have tilting degrees in two

directions, which means an over-actuated system. Compared

with the fully-actuated system, the actuators’ status of the

over-actuated system are not unique, which means a cost

function can be set to optimize the flight task. The specific

model structure is shown in Fig.1.

Including the rotation speed of the six rotors that can

be controlled, there are 12 controllable variables in the

entire model. Therefore, in order to simplify the problem,

the speed of the coaxial rotors is made equal, resulting

in nine controllable variables after simplification. For the

aircraft to move in the vertical direction, only three rotors

are required. If horizontal flight is required, the rotors can

be tilted in the desired direction, without needing to first tilt

the fuselage. When more complex curved motion is required,

the superiority of the proposed model over the underactuated

model is dramatic.

B. Description of the Dynamic Model

Before discussing the specific equations of motion, the co-

ordinate system used in this study is defined and illustrated.

Fig. 1: Structure of the novel tilting tri-rotor system

The ground coordinate system OxEyEzE and the body

coordinate system OxByBzB are both established as shown

in Fig.1. We arbitrarily select a point on the surface of the

Earth as the coordinate origin O, the direction of OxE points

is parallel with the ground, the direction of OzE points is

vertically downward, and the direction of OyE is determined

by the right-hand coordinate law. Here, our model does

not consider the influence of the Earth’s rotation; thus, the

ground coordinate system is an inertial coordinate system.

Furthermore, in order to analyze the core problem and

ignore the various subordinate factors, we employ the fol-

lowing assumptions:

Assumption 1: The fuselage is a rigid body.

Assumption 2: The effects of air resistance and wind

are not considered. Concrete models of air resistance and

wind are hard to obtain; thus, we specifically implement

lumped disturbance items in SectionIII where we discuss the

disturbance observer in detail.

Assumption 3: The origin of the body coordinate system

coincides with the centroid of the fuselage and the moment

of inertia tensor is a diagonal matrix.

Assumption 4: The gyro effect is not considered because

the rotation motion equations will be more complex if the

gyro moment items are included in the equations. Further-

more, the fuselage mass and inertia moment are relatively

small.

Assumption 5: To ensure that the tilting rotors do not hit

the shafts, we limit the tilt angles. Thus, the tilting angles

range from: αi ∈ [αmin, αmax] , βi ∈ [βmin, βmax]. These

angles are defined in the nomenclature and depicted precisely

in Fig.2. The specific values of αmin, αmax, βmin, and βmax
are given in SectionIV.

Based on these assumptions, classical mechanics theory

can be employed. According to the Newton-Euler formalism

of rigid body and mechanics theories, we obtain the follow-

ing formula [28]:
[
mI3×3 O3×3

O3×3 I

] [

V̇ B

ω̇B

]

+

[
ωB ×

(
mV B

)

ωB ×
(
IωB

)

]

=

[
FB

MB

]

(2)

where m, I = diag(Ix, Iy, Iz), ωB = [p, q, r]T , and
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Fig. 2: Illustration of tilting angles αi and βi

V B = [u, v, w]T are the mass, the second-order moment of

inertia tensor, the angular velocity and velocity in the body

coordinate system of the fuselage, respectively. Meanwhile,

FB = [XF , YF , ZF ]
T and MB = [L,M,N ]T are the exter-

nal force and external torque in the body coordinate system,

respectively. Equation (2) can be expanded as follows:






u̇ = −g′
sin θ + rv − qw +

XF

m

v̇ = g
′
cos θ sinφ− ru+ pw +

YF
m

ẇ = g
′
cos θ cosφ+ qu− pv +

ZF
m

(3)







ṗ =
Iy − Iz
Ix

qr +
L

Ix

q̇ =
Iz − Ix
Iy

rp+
M

Iy

ṙ =
Ix − Iy
Iz

pq +
N

Iz

(4)

where φ, θ, ψ are the roll, pitch, and yaw Euler angles of

the fuselage, respectively, g
′

is the gravitational acceleration.

Meanwhile, based on the coaxial structure of the fuselage and

force analysis, XF , YF , ZF and L, M , N are given by:

[
XF YF ZF

]T
=





cβ1sα1 −

√
3

2
sβ2−

1
2
cβ2sα2

√
3

2
sβ3−

1
2
cβ3sα3

sβ1 −
1
2
sβ2+

√
3

2
cβ2sα2 −

1
2
sβ3−

√
3

2
cβ3sα3

−cβ1cα1 −cβ2cα2 −cβ3cα3









F1

F2

F3





(5)

[
L M N

]T
=

[
0 −

√
3

2
l cosα2 cos β2

√
3

2
l cosα3 cos β3

l cosα1 cos β1 −
1
2
l cosα2 cos β2 −

1
2
l cosα3 cos β3

l sin β1 l sin β2 l sin β3

]



F1

F2

F3





(6)

where F1, F2, F3 are the sum of rotor lift for (A1/A2),
(B1/B2), and (C1/C2), respectively, αi, βi(i = 1, 2, 3) are

tilting angles for each pair of rotors. Here ’s’ means ’sin’,

’c’ means ’cos’, the same applies below. l is the distance

from rotor to centroid. Furthermore, according to [28],

the conversion relationship between [p, q, r] and
[

φ̇, θ̇, ψ̇
]

,

[u, v, w] and [ẋ, ẏ, ż] can be obtained as follows:





φ̇

θ̇

ψ̇



 =






1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ

0
sinφ

cos θ

cosφ

cos θ










p
q
r



 (7)





ẋ
ẏ
ż



 =

[
cθcψ cψsθsφ−cφsψ sφsψ+sθcφcψ
cθsψ sψsθsφ+cφcψ sθcφsψ−sφcψ
−sθ sφcθ cφcθ

]




u
v
w



 (8)

where [x, y, z]T is the position of the fuselage centroid in

the world coordinate system.

III. CONTROLLER DESIGN

The proposed system is over-actuated, and control al-

location is the primary method for dealing with a non-

linear redundant system. This study employs a new con-

trol allocation algorithm to design the control framework.

Meanwhile, the control law involves the multiple inputs-

multiple outputs (MIMO) feedback linearization algorithm.

The relative degrees of the system are equal to the number of

its state vectors; therefore, this affine nonlinear system can be

precisely and completely linearized by the MIMO feedback

linearization method instead of approximate linearization

using the Jacobian method. Furthermore, a NDOB is used to

improve the robustness of the entire system. The proposed

over-actuated system control architecture is illustrated in

Fig.3.

A. Control Law

First, based on the discussion in SectionII, the model

equation is written as a formal form of an affine nonlinear

system, as follows:

ẋ = f (x) + g (x)U (9)

y = l (x) (10)

where x=[x, y, z, φ, θ, ψ, u, v, w, p, q, r]
T
=[x1, · · · , x12]T ,

U = [XF , YF , ZF , L,M,N ]
T
= [U1, U2, · · · , U6]

T

f (x) =





























x7cx5cx6 + x8 (cx6sx5sx4 − cx4sx6)+
x9 (sx4sx6 + sx5cx4cx6)

x7cx5sx6 + x8 (sx6sx5sx4 + cx4cx6)+
x9 (sx5cx4sx6 − sx4cx6)

−x7sx5 + x8sx4cx5 + x9cx4cx5
x10 + x11sx4 tanx5 + x12cx4 tanx5

x11cx4 − x12sx4
x11sx4 secx5 + x12cx4 secx5
−g′

sx5 + x12x8 − x11x9
g

′
cx5sx4 − x12x7 + x10x9

g
′
cx5cx4 + x11x7 − x10x8
(Iy − Iz)I

−1
x x11x12

(Iz − Ix)I
−1
y x10x12

(Ix − Iy)I
−1
z x10x11





























(11)
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Fig. 3: Control architecture of the proposed over-actuated system

g (x) =

[
O6×6

diag
(
m−1,m−1,m−1, I−1

x , I−1
y , I−1

z

)

]

= [g1 (x) , g2 (x) , · · · , g6 (x)]
(12)

with

y = l (x) = [x, y, z, φ, θ, ψ]
T
= [h1 (x) , h2 (x) , · · · , h6 (x)]T .

(13)

According to the theory of feedback linearization of the

MIMO system [29], it is necessary to first determine the

total relative degree of the system.

We have,

Lgjhi (x) =
∂hi (x)

∂xT
gj (x) = 0, 1 6 i, j 6 6. (14)

Meanwhile, LgjLfhi (x) = Lgj

∂hi (x)

∂xT
f (x) =

∂

∂xT

(
∂hi (x)

∂xT
f (x)

)

gj (x) , 1 6 i, j 6 6 and the

decoupling matrix Γ (x) is obtained as follows:

Γ (x) =









Lg1Lfh1 (x) · · · Lg6Lfh1 (x)
Lg1Lfh2 (x) · · · Lg6Lfh2 (x)

...
...

Lg1Lfh6 (x) · · · Lg6Lfh6 (x)









=

[

K1 O3×3

O3×3 K2

]

(15)
where

K1 =
1

m





cx5cx6 cx6sx5sx4 − cx4sx6 sx4sx6 + sx5cx4cx6

cx5sx6 sx6sx5sx4 + cx4cx6 sx5cx4sx6 − sx4cx6

−sx5 sx4cx5 cx4cx5





(16)

K2 =








I−1
x I−1

x sinx4 tanx5 I−1
x cosx4 tanx5

0 I−1
y cosx4 −I−1

y sinx4

0 I−1
z

sinx4
cosx5

I−1
z

cosx4
cosx5







.

(17)

The matrix mK1 is orthogonal, so we know

|mK1| = 1, which means that |Γ (x)| = |K1| |K2| =
(mIxIyIz cosx5)

−1
. Therefore, |Γ (x)| 6= 0 and

the matrix Γ (x) is nonsingular and invertible when

cosx5 6= 0 ⇔ x5 = θ 6= δπ +
π

2
(δ ∈ Z), which means the

relative degree vector of the system is obtained:

ri = 2, (1 6 i 6 6) . (18)

The total relative degree is

r0 =

6∑

i=1

ri = 2× 6 = 12 = n. (19)

Meanwhile, three necessary conditions, including involutive

condition and dimension of distribution condition are all met

and verified. Thus, there are no internal dynamics and the

entire system can be completely linearized with the control

law

U = Γ (x)
−1

(−b (x) + V ) (20)

and the diffeomorphism z = T (x), where b (x) is an offset

item of the control law and z = T (x) is the state vector of

the linearized system.

Based on the feedback linearization theory and [29], we

have the following:

z = T (x) = [h1 (x) Lfh1 (x) · · · h6 (x) Lfh6 (x)]T

=
[

x, ẋ, y, ẏ, z, ż, φ, φ̇, θ, θ̇, ψ, ψ̇
]T

b (x) =
[
L2
fh1 (x) L

2
fh2 (x) · · · L2

fh6 (x)
]T

=

[
∂f1
∂x

,
∂f2
∂x

,
∂f3
∂x

,
∂f4
∂x

,
∂f5
∂x

,
∂f6
∂x

]T

where fi represents the i-th component of f . According

to (10) ∼ (21), Equation (10) can be linearized into a linear

time-invariant relationship, as follows:
{

ż = A0z +B0V

ξ = C0z
(21)

where A0 = diag (∆1, · · · , ∆1), B0 = diag (∆2, · · · , ∆2),
C0 = diag (∆3, · · · , ∆3) and

∆1 =

[
0 1
0 0

]

∆2 =

[
0
1

]

∆3 =
[
1 0

]

As the tracking control problem, we choose the control law
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for the derived linear relationship ( (21)):

Vi = ÿid − σi1 (ẏi − ẏid)− σi2 (yi − yid) (i = 1, · · · , 6) .
(22)

The yi and the derivative of yi can be obtained from dynamic

equation (10) in the last control cycle. The yid is the

desired target of the i-th component of y or ξ. According to

Hurwitz’s theorem, if σi1 > 0, σi2 > 0 , then all states will

be asymptotically stable and the tracking error will converge

to zero exponentially.

B. Control Allocation

In this study, the control effectiveness equation is de-

scribed as follows:

U = h (x, τ , t) =























F1sα1cβ1 −
√
3

2
F2sβ2 −

1

2
F2sα2cβ2 +

√
3

2
F3sβ3−

1

2
F3sα3cβ3

F1sβ1 −
1

2
F2sβ2 +

√
3

2
F2sα2cβ2 −

1

2
F3sβ3−√

3

2
F3sα3cβ3

−F1cα1cβ1 − F2cα2cβ2 − F3cα3cβ3

−
√
3

2
F2lcα2cβ2 +

√
3

2
F3lcα3cβ3

F1lcα1cβ1 −
1

2
F2lcα2cβ2 −

1

2
F3lcα3cβ3

F1lsβ1 + F2lsβ2 + F3lsβ3
























.

(23)

The six virtual control commands: three components of

external forces and three components of external moments

are described as U = [U1, U2, U3, U4, U5, U6]
T , which are

on the left-hand side of the equation, and the actuator inputs

are τ = [F1, F2, F3, α1, α2, α3, β1, β2, β3]
T , which are on

the right-hand side of the equation. Equation (23) is the key

method for dealing with this problem and combining it with

the optimization function. Obviously, the control effective-

ness equation (23) in this study is nonlinear. If an existing

nonlinear programming method is used directly, the real-

time calculation is difficult to be guaranteed. Therefore, a

reversible mapping C = Θ (τ ) is proposed here to linearize

the nonlinear problem where C = [a0, b0, · · · ,m0]
T

is an

intermediate vector. Specifically, the reversible mapping is

denoted as follows:







a0 = F1 cosβ1 sinα1

c0 = F2 cosβ2 sinα2

e0 = F3 cosβ3 sinα3







f0 = F1 sinβ1

b0 = F2 sinβ2

d0 = F3 sinβ3






g0 = F1 cosβ1 cosα1

h0 = F2 cosβ2 cosα2

m0 = F3 cosβ3 cosα3.

(24)

Meanwhile, the inverse mapping τ = Θ−1 (C) is pre-

sented as follows:






























tanα1 =
F1 cosβ1 sinα1

F1 cosβ1 cosα1
=

a0

g0

tanα2 =
F2 cosβ2 sinα2

F2 cosβ2 cosα2
=

c0

h0

tanα3 =
F3 cosβ3 sinα3

F3 cosβ3 cosα3
=

e0

m0

⇒



























α1 = arctan
a0

g0

α2 = arctan
c0

h0

α3 = arctan
e0

m0

(25)






















tanβ1 = F1 sin β1(sinα1)
F1 cos β1 sinα1

= f0
a0

sin
(

tan−1 a0

g0

)

= f0√
a2
0
+g2

0

tanβ2 = F2 sin β2(sinα2)
F2 cos β2 sinα2

= b0
c0

sin
(

tan−1 c0
h0

)

= b0√
c2
0
+h2

0

tanβ3 = F3 sin β3(sinα3)
F3 cos β3 sinα3

= d0
e0

sin
(

tan−1 e0
m0

)

= d0√
e2
0
+m2

0

⇒



















β1 = arctan f0√
a2
0
+g2

0

β2 = arctan b0√
c2
0
+h2

0

β3 = arctan d0√
e2
0
+m2

0

(26)







































F1 = F1 sin β1

sin β1
= f0

sin

(

tan−1 f0√
a2
0
+g2

0

) =
√

a2
0 + g20 + f2

0

F2 = F2 sin β2

sin β2
= b0

sin

(

tan−1 b0√
c2
0
+h2

0

) =
√

b20 + c20 + h2
0

F3 = F3 sin β3

sin β3
= d0

sin

(

tan−1 d0√
e2
0
+m2

0

) =
√

d20 + e20 +m2
0

⇒











F1 =
√

a2
0 + g20 + f2

0

F2 =
√

b20 + c20 + h2
0

F3 =
√

d20 + e20 +m2
0

.

(27)

Equation (24) is substituted into (23), giving

U = KC =

1

2















2 −
√
3 −1

√
3 −1 0 0 0 0

0 −1
√
3 −1 −

√
3 2 0 0 0

0 0 0 0 0 0 −2 −2 −2
0 0 0 0 0 0 0 −

√
3l

√
3l

0 0 0 0 0 0 2l −l −l
0 2l 0 2l 0 2l 0 0 0















C.

(28)

It can be seen that we have linearized the nonlinear

problem through the reversible mapping (24). The linearized

result (28) allows us to use various classical linear control

allocation methods. Herein, we employ the pseudo inverse

method. The pseudo inverse solution is the two-norm solu-

tion to the control allocation problem and can be formulated

as follows [23]:

min
δ

J
′

= min
δ

1

2

(

δ
′

+ c
′
)T

W
(

δ
′

+ c
′
)

s.t. Bδ
′

= ddes (29)

where W is a weighting matrix and c is an offset vector.

The desired result is

δ = −c+W−1BT
(

BW−1BT
)−1

(ddes +Bc) . (30)

From the above discussion, we know that pseudo inverse

method focuses on the energy minimization of the 2-norm
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in each control step.

Back to our study, we obtain the pseudo inverse of K

according to (28) and (30):

K# = W−1KT
(

KW−1KT
)−1

= KT
(

KKT
)−1

(W = I)

=
1

6

















2 0 0 0 0 0

−
√
3 −1 0 0 0 2l−1

−1
√
3 0 0 0 0√

3 −1 0 0 0 2l−1

−1 −
√
3 0 0 0 0

0 2 0 0 0 2l−1

0 0 −2 0 4l−1 0

0 0 −2 −2
√
3l−1 −2l−1 0

0 0 −2 2
√
3l−1 −2l−1 0

















.

(31)

After obtaining the pseudo inverse matrix K#, we take

C = K#U , so that we get Fi, αi, βi by using the inverse

mapping τ = Θ−1 (C). With regard to the saturation of

actuators, we add several saturation function terms in the

simulation program. Furthermore, it can be solved by the

redistributed pseudo inverse method in the future work.

C. Nonlinear Disturbance Observer

Next, we consider the original system with the lumped

disturbances as follows:

ẋ = f (x) + g (x)U +

[
O6×6

I6×6

]
[
d1 d2 · · · d6

]T

= f (x) + g (x)U + p (x)d (32)

where p (x) = [p1 (x) , p2 (x) , · · · , p6 (x)] and d is the

disturbance vector.

Then, based on some assumptions described in [30], the

effective NDOB is presented as follows: [30]
{

żd = −ℓ (x) [p (x) (λ (x) + zd) + f (x) + g (x)U ]

d̂ = zd + λ (x)
(33)

where d̂ and zd are the estimated disturbance vector and the

internal state vector of the nonlinear observer, respectively.

λ (x) is a compensation gain matrix to be designed, and

ℓ (x) = ∂λ(x)
∂x

. Meanwhile, the proof of the observer stability

can be found in [30]. In this study, these two matrices are

chosen as follows:

λ (x) = [λ1x7, λ2x8, λ3x9, λ4x10, λ5x11, λ6x12]
T

(34)

λi > 0 (i = 1, · · · , 6)

ℓ (x) =
∂λ (x)

∂x
= [O6×6 diag (λ1, λ2, · · · , λ6)] . (35)

According to the existing conclusion in [30], the feedback

linearization controller can be expanded as follows:

U = Γ (x)
−1

[

−b (x) + V + Υ (x) d̂
]

(36)

where Γ (x), b (x), and V are defined in (20). Meanwhile,

Υ (x) =






γ11 (x) · · · γ16 (x)
...

...
...

γ61 (x) · · · γ66 (x)




 (37)

where

γij (x) = −
ri−2∑

k=0

cik+1LpjL
k
f hi − LpjL

ri−1
f hi

i, j ∈ {1, · · · , 6} .
(38)

In (38), it is known that ri = 2 and Lpjhi = 0 , i, j ∈
{1, · · · , 6} based on the (13) and (18); therefore:

γij (x) = −
ri−2∑

k=0

cik+1LpjL
k
f hi − LpjL

ri−1
f hi

= −ci1Lpjhi − LpjLfhi

= −LpjLfhi i, j ∈ {1, · · · , 6} . (39)

According to (39), it is no longer necessary to adjust the

parameters ci1, i ∈ {1, · · · , 6}. In summary, the final control

law is obtained, i.e., (36).

IV. SIMULATION

A physical model of the proposed tri-rotor has been

developed, but there are still some hardware debugging

tasks that have not been completed. Therefore, our model

parameters for the simulation experiments are based on those

of the physical model, and the actual flight test has not

been conducted. The detailed model parameters are shown as

follows: the distance from centroid to rotor l is 0.413m, and

the mass of UAV m is 1.5kg. The moment of inertia on the

X , Y , Z axis Ix, Iy , Iz are 0.11586kgm2, 0.11584kgm2,

0.22980kgm2, respectively. The disturbance observer coef-

ficient λi = 10.0(i = 1, · · · , 6). The control coefficient

σ11 = 6, σ12 = 12, σ21 = 6, σ22 = 5, σ31 = 2, σ32 = 1 and

σi1, σi2 = 3.0(i = 4, 5, 6). Three simulation experiments are

conducted in this study to validate the proposed approach

using MATLAB V9.5. To avoid the propeller hitting the

shaft, we set αmin = −π
2 , αmax = π

2 , βmin = −π
2 ,

βmax = π
2 , which means αi ∈

[
−π

2 ,
π
2

]
and βi ∈

[
−π

2 ,
π
2

]
.

Meanwhile, we set F ∈ [0, 10]N . The disturbance variables

are set in order to verify the effectiveness of the NDOB as

follows:






d1 = 0 d2 = 0 d3 = 2 sin(
πt

20
− π

6
)

d4 = 1.7 d5 = 2.5 d6 = 2 cos(
πt

20
− π

6
)− 0.5.

(40)

In addition, Gaussian noise (µ = 0, σ2 = 1) is introduced

into each simulation, increasing the reliability of the simu-

lation results.

The simulation program is based on the dynamics model,

control algorithm, and NDOB obtained in the previous
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Fig. 4: Position of the UAV of Exp1: Hovering with changing

attitude

Fig. 5: Attitude of the UAV of Exp1: Hovering with changing

attitude

discussion. The purpose of the simulation is to verify the high

maneuverability of the UAV over the classical rotorcrafts and

test the effectiveness of the control method we proposed.

1) Exp1: Hovering with Changing Attitude: Exp1 is

intended to prove that our UAV can change the attitude

angles according to the given rules we expect while hovering

at a fixed point. In this simulation, the disturbance (40)

applies at 25–35 s, and the UAV can hover at a point

with changing attitude. The initial position and desired

position are (0, 0, 0)m, (1, 1, 1)m, respectively. The

initial attitude and desired attitude are (0, 0, 0)rad,

(0.2
√
2 cos 0.05πt, 0.2

√
2 sin 0.05πt, 0.2

√
2)rad,

respectively. Herein, our proposed control method is

applied in this simulation. Fig.4 and Fig.5 show the x, y, z
coordinates and three attitude angles φ, θ, ψ, respectively.

The results of Exp1 proves the effectiveness of our

proposed control method. The position and attitude of the

UAV both converge to the desired target. Meanwhile, a

classical rotorcraft cannot accomplish this task because

when it changes its attitude during the hovering operation, it

has a horizontal force component that changes its position.

2) Exp2: Zigzag with Horizontal Attitude by Applying

NDOB or Not: Here, horizontal attitude means that roll,

pitch, and yaw angle are all zero. The purpose of Exp2 is to

Fig. 6: Spatial trajectory of the UAV of Exp2: Zigzag with

horizontal attitude (without applying NDOB)

prove that the effectiveness of NDOB. In this simulation, the

disturbance (40) applies at 25–35 s, and the UAV can zigzag

with horizontal attitude with or without NDOB to prove the

effectiveness of the NDOB. The initial attitude and desired

attitude are both (0, 0, 0)rad. The initial position is (0, 0, 0)m.

We set the desired trajectory as follows:







xd = 1

yd = 1

zd = 1
︸ ︷︷ ︸

t∈(0,10s]

⇒







xd = −2

5
t+ 5

yd = 1

zd = 1
︸ ︷︷ ︸

t∈(10,15s]

⇒







xd =
2

5
t− 7

yd = −2

5
t+ 7

zd = 1
︸ ︷︷ ︸

t∈(15,20s]

⇒







xd = −2

5
t+ 9

yd = −1

zd = 1
︸ ︷︷ ︸

t∈(20,25s]

⇒ · · · ⇒







xd =
2

5
t− 19

yd = −2

5
t+ 13

zd = 1
︸ ︷︷ ︸

t∈(45,50s]

. (41)

Fig.6 presents the x, y, z coordinates of the fuselage without

NDOB. It can be seen that the position of the UAV di-

verges under the influence of disturbance. Meanwhile, Fig.7

presents the fuselage spatial trajectory with NDOB, and Fig.8

and Fig.9 show the x, y, z coordinates and three attitude

angles φ, θ, ψ with NDOB, respectively.

Again, this task cannot be conducted by the classical rotor-

craft because it has to tilt its attitude when tracking a spatial

trajectory. Fig.6 illustrates that the system may diverge

under the influence of the disturbance without NDOB. Fig.7,

Fig.8, and Fig.9 show that the disturbance can be effectively

suppressed in the presence of NDOB. Exp2 proves that the

NDOB we introduced can effectively compensate for the

effects of disturbances and improve the robustness of the

system.

3) Exp3: Spatial Ellipse with Horizontal Attitude by Ap-

plying Feedback Linearization or PID: Here, horizontal

attitude means that roll, pitch, and yaw angle are all zero.

The purpose of Exp3 is to compare our control method and
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Fig. 7: Spatial trajectory of the UAV of Exp2: Zigzag with

horizontal attitude (with applying NDOB)

Fig. 8: Position of the UAV of Exp2: Zigzag with horizontal

attitude (with applying NDOB)

classical PID method under the same task. In this simulation,

the UAV can track the spatial ellipse with horizontal attitude

by applying feedback linearization or PID to prove our

control law are superior. The initial position and desired po-

sition are (0, 0, 0)m, (0.5 cos 0.05πt, 0.5 sin 0.05πt, 3−
2 cos 0.05πt)m, respectively. The initial attitude and desired

attitude are both (0, 0, 0)rad. Fig.10 presents the fuselage

spatial trajectory. Fig.11 and Fig.12 show the x, y, z coor-

dinates error in two control methods, and Fig.13 shows the

three attitude angles φ, θ, ψ. Herein, we apply the classic PID

method for comparison as follows:

U i = si1 (xid − xi) + si2

∫

(xid − xi) dt+ si3 (ẋid − ẋi)

(i = 1, · · · , 6)
(42)

where we have tried our best to tune these coefficients as

follows: s11 = s21 = 7500, s12 = s22 = 0, s13 = s23 =
1000, s31 = 20, s32 = 3, s33 = 20, s41 = s51 = 5.7, s42 =
s52 = 1, s43 = s53 = 0.1, s61 = 7, s62 = 1.01, s63 = 0.15.

All four figures show the comparison between our method

and classical PID method. It can be seen from Fig.11 that the

control effects of two method are similar in the X direction.

The overshoot of our method is slightly smaller than the

Fig. 9: Attitude of the UAV of Exp2: Zigzag with horizontal

attitude (with applying NDOB)

Fig. 10: Spatial trajectory of the UAV of Exp3: Spatial ellipse

with horizontal attitude (Feedback Linearization vs PID)

PID method in the Y direction, and the overshoot of the PID

method is much larger than our method in the Z direction.

Fig.12 considers the integrated error E =
√

e2x + e2y + e2z
of two methods. Obviously, our method integrated error is

smaller than the PID method. Overall, Fig.10 visually illus-

trates the difference between the two methods. Meanwhile,

the unit of the vertical axis in Fig.13 is 10−16rad which is

very small, so that both methods are ideal in attitude control.

In summary, the simulation results meet our expectations,

and the position and attitude of the UAV can effectively and

rapidly follow the track of the desired reference signal with a

small error, thus validating the feedback linearization-based

control method. The linear control law parameters σi1, σi2
are appropriate because they have a good tradeoff between

fluctuation and overshoot. NDOB significantly enhances the

resistance to disturbance and the overall robustness of the

system, thereby achieving the expected effect. These simu-

lation results demonstrate the reliability of our hypotheses.

Thus, we have laid the foundation and provided the theoret-

ical basis for actual flight experiments in the future.

V. CONCLUSION

In summary, a novel over-actuated tri-rotor UAV system,

its control method, and control allocator are introduced
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Fig. 11: Position error ex, ey, ez of the UAV of Exp3: Spatial

ellipse with horizontal attitude (Feedback Linearization vs

PID)

Fig. 12: Integrated position error E =
√

e2x + e2y + e2z of

the UAV of Exp3: Spatial ellipse with horizontal attitude

(Feedback Linearization vs PID)

in this research field. The special structure of this UAV

makes it more maneuverable while maintaining the attitude

of the fuselage, providing wide application prospects, such

as air–ground coordination. Meanwhile, actual flight tests

will be conducted with a physical model of the proposed

UAV and the UAV will be subsequently improved to have

greater mobility in future. Moreover, the ability of the UAV

to tolerate several actuators in the fuselage will also be

investigated. Finally, a more efficient and robust control

algorithm will be developed.
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